NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

APPLIED PHYSICS DEPARTMENT

SPH 2201 VIBRATIONS AND WAVES

·LIBRARY USE ONLY

[4]

SUPPLEMENTARY EXAMINATION

BSc HONOURS PART II: JULY 2001

DURATION: 3 HOURS

ANSWER <u>ALL</u> PARTS OF QUESTION 1 IN SECTION A AND ANY <u>THREE</u> QUESTIONS FROM SECTION B. SECTION A CARRIES 40 MARKS AND SECTION B CARRIES 60 MARKS.

SECTION A

- (a) Write down two simple equations to describe harmonic and anharmonic vibrations including definition for each symbol.
 - (b) Explain light damping, heavy damping and critical damping of a vibrating system.

For a vibrator with mass, m = 0.01 kg and stiffness, S = 32 N/m what value of damping resistance would produce critical damping? [7]

- (c) (i) Explain circuit oscillations by drawing a simple circuit. [4]
 - (ii) Find the resonance frequency if capacitance of 100 mH coil is 100 μ F. [3]
- (d) (i) Briefly explain scattering of light in electromagnetic radiation. [3]
 - (ii) Write down time dependent voltage equations for LCR resonant circuit.
- (e) Write down three general properties of free vibration. [3]
- (f) Explain with mathematical expressions sinusoidal incident and reflected waves together with standing waves. [5]
- (g) Describe what you understand about electromagnetic waves in vacuum and dielectric with reference to Faraday's law and Maxwell's explanation. [5]

1

SECTION B

- For a system with two equal and one different springs and two equal masses, write (a)
 - (b) Write down two mathematical expressions for the normal modes of vibration for a two - coordinate vibrators and explain the symbols used. [4]
 - Derive general solutions for the two displacements ψ_1 and ψ_2 of the two masses. [7] (c)
 - At a certain instant during the vibration of a symmetric system the mode coordinates have the values $q_1=1.2\times 10^{-3}\,(kg)^{V_2}$ m and $q_2=-0.25\times 10^{-3}\,(kg)^{V_2}$ m. Calculate the (c) displacements ψ_1 and ψ_2 , if m = 0.020 kg.
- Write down the coefficients of the Fourier function and show the phase diagram of (a)
 - (b) Derive total energy equation for two-coordinate system in terms of mode coordinates. [10]
- 4 (a) Give the characteristics of sinusoidal travelling wave of a string. [3]
 - (b) With the aid of a diagram, derive the wave equation for an acoustic wave as

$$\frac{\partial^{^{2}}\psi}{\partial t^{^{2}}}\approx\frac{1}{K\rho}\;\frac{\partial^{^{2}}\psi}{\partial z^{^{2}}}$$

49366 . 135 . 25 . 6

where symbols have their usual meanings. Also, explain what you understand by 'pressure wave'. [9]

- (c) Derive an equation for the total energy density of a stretched string. [8]
- What is attenuation of travelling wave for a string? Derive equations (a)

$$K \approx \pm \omega/c$$
 and

$$\kappa \approx \pm \Gamma/2c$$

where $c = (T/\mu)^{0.5}$, T is tension and μ is mass per unit length; $\Gamma = \beta / \mu$ and β is the resistance per unit length.

[12]

1

Describe electromagnetic waves in a vacuum and in a dielectric. State Maxwell's two wave equations that satisfy magnetic and electric fields explaining all the symbols.

- 6. (a) (i) Give the general equations of incident, reflected and transmitted waves expressed in terms of wave vector.
 - (ii) Express, in terms of the dispersion relation for a vacuum, total internal reflection.

[3]

[3]

- (iii) How are standing waves in an enclosure formed? Explain with mathematical expressions. [6]
- (b) Give the differences between Fraunhofer conditions and Fresnel conditions of diffraction and illustrate with an appropriate diagram. Calculate the amplitude A for disturbances of equal amplitude A_i and phase difference α using a vector diagram. [8]

END OF PAPER

3