NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

APPLIED PHYSICS DEPARTMENT

SPH 2203 - INSTRUMENTATION PHYSICS

BSc HONOURS PART II: JUNE 2004 DURATION: 3 HOURS

ANSWER <u>ALL</u> PARTS OF SECTION A AND ANY <u>THREE</u> IN SECTION B. SECTION A CARRIES 40 MARKS AND SECTION B CARRIES 60 MARKS

SECTION A							
1.	(a)	Describe any two elements of a measurement system.	[4]				
(b)		What is the difference between precision and accuracy.	[4]				
	(c)	List four sources of possible errors in measurement instruments.	[4]				
	(d)	(d) Explain concisely the significance of each of the components in the tra- ladder using pressure as an example.					
	(e)	Distinguish between noise and interference and describe two methods used reduce noise in a measurement system.	to [6]				
	(f)	Using well labelled functional diagrams, show how the following instrumen blocks can be implemented.	itation				
		200 G G G G G G G G G G G G G G G G G G	4] 4]				
	(g)	Differentiate between laminar and turbulent flow in a pipe.	4]				
	(h)	(h) Describe concisely the principle of operation of a piezo electric transduc					
SECTION B							

- You are required to design an electronic instrument which will measure temperature in an
 oven and numerically display the value. The required temperature range is from 10°C to
 100°C with an accuracy of 1%.
 - (a) Draw a block diagram of the instrument, briefly describing the function of each block. [7]
 - (b) Describe the selected temperature sensor.

[5]

The instrument has been tested by measuring known temperatures. The results (c) of the testing are shown in the table below. Discuss the accuracy and precision of the instrument.

Temperature °C	Displayed Value
11	11.3
15	14.1
30	29.6
45	44.2
50	47.4
61	64.0
68	66.2
72	70.3
81	79.6
93	91.1
100	96.1

- 3. Write down Bernoulli's equation and explain all the terms in the equation. [5] (a)
 - State the assumptions involved in deriving Bernoulli's equation. (b) [5]
 - (c) Using a well labelled diagram, describe and outline the differences between the following flow meters.
 - (i) Orifice meter and
 - (ii) Venturi meter.

[10]

- 4. What is a (a)
 - signal conditioning element and a (i)
 - deflection bridge

[4]

(b) Design a Reactive Deflection Bridge that incorporates a capacitance level sensor.

A capacitance level transducer is used to measure the depth h of liquid in a tank (c) between 0 and 7m. The total length l of the transducer is 8m and the ratio b/a of the diameter of the concentric cylinders is 2.0. The dielectric constant ε of the liquid is 2.4 and the permittivity of free space ε_o is 8.85 x 10 $^{-12}$ Fm⁻¹. The transducer is incorporated into the deflection bridge of question 4 (b) with $R_2 = 100\Omega$

 $R_3 = 10k\Omega$ and $V_s = 15V$.

- (i) Calculate the value of C_{o} so that the amplitude E_{TH} is zero when the tank is
- (ii) Using Co calculate E_{TH} at maximum level.

[3]

(iii) Explain why the relationship between E_{TH} and h is non-linear and calculate the non linearity at h = 3.5m as a percentage of full scale deflection.

5.	(a)	Explain the thermoelectric effect.	[3]
	(b)	List the five thermocouple laws.	[5]
	(c)	An ion Vs constantan thermocouple is to be used to measure temperatures between 0 and 300°C. The emf values are given below. $E_{100.0}=5268\mu V$ $E_{200.0}=10777\mu V$ $E_{300.0}=16325\mu V$	S
		(i) Find the non-linearity at 100°C and 200°C as a percentage of full s	scale. [4]
		(ii) Between 100°C and 300°C the thermocouple <i>emf</i> is given by $E_T = a_1 T + a_2 T^2$ Calculate a_1 and a_2 .	[4]
		(iii) The emf is $12500 \mu V$ relative to a reference junction of $20^{\circ} C$ and corresponding reference junction current voltage is $1000 \mu V$. Use result of (ii) to estimate the measured junction temperature.	
6.	(a)	Explain briefly what is meant by nuclear magnetic resonance (NMR)?	[4]
	(b)	How is the technique of nuclear resonance absorption used to extract info about the interior of solids.	rmation [9]
	(c)	Discuss NMR imaging with respect to the planar tissue model.	[7]
		:	

4.C