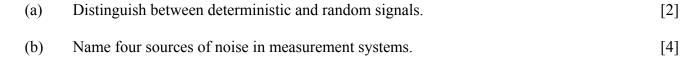
NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

APPLIED PHYSICS DEPARTMENT

SPH 2203 – INSTRUMENTATION PHYSICS

BSc. HONOURS PART II: MAY 2006


DURATION: 3 HOURS

ANSWER <u>ALL</u> QUESTIONS FROM SECTION A AND <u>ANY 3</u> QUESTIONS FROM SECTION B. SECTION A CARRIES 40 MARKS AND SECTION B CARRIES 60 MARKS.

SECTION A

1	(a)	An instrument can be <i>precise</i> but not <i>accurate</i> . Explain.	4]
	(b)	List and explain four possible sources of errors in measurement instruments.	4]
	(c)	Explain what is meant by traceability ladder when applied to a measurement system used by a calibration company.	4]
	(d)	A system is specified as being first order with a time constant of 10 s and a steady sta value of 5. How will the output of the system vary with time when subjected to a step input?	
	(e)	(ii) Calculate Jonhson noise for a resistive sensor whose resistance is 65.2Ω at 22.3 °C. The frequency range of the input signal is from 100 kHz to 120 kHz.	3] 3]
	(f)	Draw diagrams for the following thermocouple junction configurations:	
		 (i) insulated junction (ii) grounded junction (iii) exposed junction Give one advantage or disadvantage of each configuration. 	6]
	(f)	Explain the principle of operation of a linear variable differential transformer (LVDT). 4]
	(g)	Explain the conservation of volume flow rate? Include a relevant equation and assumptions made.	4]
	(h)	With the aid of a well-labeled diagram explain how an ionization chamber can be use to measure radiation.	d 4]

SECTION B

- (c) The 4-20 mA current loop is a popular medium for industrial signal transmission. Suggest two reasons for its popularity. Explain how it is possible for a two-wire current loop system to utilize the signal wire pair to supply power to sensors. [6]
- (d) Figure 1 below shows a balanced differential receiver/transmitter pair interconnected by a wire connection over a straight path covering a distance of 100 m. The transmission path is subjected to a magnetic interference caused by high power machine switching transients. An instrument engineer has one of the four choices for the type of interconnecting cables:
 - parallel pair (unshielded),
 - parallel pair (shielded),
 - twisted pair (unshielded),
 - twisted pair (shielded).
 - (i) For each of the four cases listed, explain the mechanism by which the magnetic field generated by the high power machines generates a noise voltage at the receiver input.
 - (ii) Suggest a ranking of the listed options in terms of their magnetically induced noise rejection properties. [4]

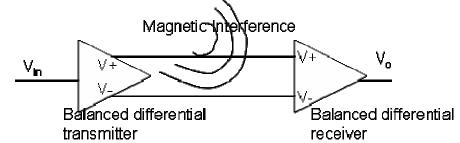


Figure 1. Balanced differential receiver/transmitter

- (a) Design a reactive deflection bridge that incorporates a variable reluctance push pull displacement sensor.
 - (b) A variable reluctance push pull displacement sensor is used to measure displacement. The total distance between the two ferromagnetic cores is 5 cm, the radius of each core is 4 cm, \Re_o is equal to 1.3 x 10⁷ H⁻¹ and the permeability of free space is equal to $4\pi \times 10^{-7}$ Hm⁻¹. The sensor is incorporated into the deflection bridge of question 3(a) with V_s equal to 15 V.
 - (i) Calculate the constants k and α for the sensor.
 - (ii) Calculate E_{TH} if the measured displacement is 2 cm.
 - (c) Write explanatory notes on the following data presentation elements:
 - (i) analogue chart recorders,
 - (ii) light emitting diodes,
 - (iii) liquid crystal displays.

2

3

[9]

[4]

[3]

[4]

[4]

4	(a)	What is the difference between a sensor and a transducer?	[4]	
	(b)	Draw and explain a circuit diagram that will enable you to get a voltage signal when a stragauge is used to measure mechanical strain. Include temperature compensation.	ain [6]	
	(c)	A thermometer originally indicates a temperature of 20 °C and is then suddenly inserted i liquid at 45 °C. The thermometer has a time constant of 2 s. Derive a differential equation showing how a thermometer reading is related to the temperature input.	nto a	
		Give its solution showing how the thermometer reading varies with time.	[10]	
5	(a)	What do you understand by Reynolds number in flow measurement.	[2]	
	(b)	For what range of Reynolds number do you regard a fluid flow to be (i) turbulent and		
		(ii) laminar?	[4]	
	(c)	 (i) Describe the principle of operation of an electromagnetic flowmeter. (ii) What are the five main features of this type of flowmeter? (iii) An electromagnetic flow meter is used to measure the volume flow rate of a 	[5] [5]	
		conducting fluid in a circular pipe of radius 0.10 m. Calculate the average velocity		
		the fluid if the magnetic field is 0.15 T and the voltage appearing across the measurement electrodes is 0.8 V.	[4]	
6 Write explanatory notes on the following radiation detectors:				
0	(a)	semiconductor detector,	[5]	
	(b)	proportional counter,	[5]	
	(c)	Geiger – Muller counter,	[5]	
	(d)	scintillation detector.	[5]	

- END OF EXAMINATION -