NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

APPLIED PHYSICS DEPARTMENT

SPH 2205 - ATOMIC PHYSICS

BSc HONOURS PART II: MAY 2006 DURATION: 3 HOURS

ANSWER <u>ALL</u> QUESTIONS FROM SECTION A AND <u>ANY 3</u> QUESTIONS FROM SECTION B. SECTION A CARRIES 40 MARKS AND SECTION B CARRIES 60 MARKS.

SECTION A

1.	(a)	(i)	Write down the ground state configuration of Lithium.	[4]
		(ii)	Calculate the angle between the total and orbital angular momentum for the ${}^{4}D_{3/2}$ state.	or [6]
		(iii)	Which selection rules govern the emission of spectral lines between atomic states that have quantum numbers assigned to them.	[4]
	(b)	Find the energy level terms corresponding to the configuration 2s3p. [5		
	(c)	(i)	Develop the time – independent Schröedinger equation for two non– interacting identical particles.	[5]
		(ii)	Write down the Hamiltonian of two interacting electrons of an Helium atom.	ا [6]
	(d)	State the Lande interval rule for the energy separation \in in terms of the quantum numbers. [5]		
	(e)	Evalu	ate the Lande factor for the ${}^{3}P_{1}$ level in the 2p3d configuration.	[5]

SECTION B

- 2. (a) An electron changes its value of m_s from $+\frac{1}{2}$ to $-\frac{1}{2}$ as a result of an interaction with a magnetic field.
 - (i) Calculate the change in angular momentum. [4]

		(ii)	If this happens in a magnetic field of 2T, calculate the change in the electron's energy.	[6]
	(b)	(i)	Given that J=L+S verify that the spin-orbit energy correction is $E_{sL} = A[j(j+1) - l(l+1) - s(s+1)]$ where A is a proportionality constant	nt [6]
		(ii)	Find values of E_{SL} when $j = l \pm 1$ and $s = \frac{1}{2}$	[4]
3.	(a)	How	does the anomalous Zeeman effect arise ?	[6]
	(b)	Show $\mu = \frac{\mu}{\hbar}$	that the expression for the total magnetic dipole moment of an atom is $\frac{b}{b}[L+2S]$. Define all the quantities involved.	[6]
	(c)	If the $\Delta E =$ hence	oriental potential energy in a magnetic field B is $\frac{\mu_b B}{\hbar} \frac{(3J^2 + S^2 - L^2)}{2J^2} J_Z = \mu_b g B M_J, \text{ express g in terms of j, l and s and}$ find g for the ³ D ₃ energy level.	[8]
4.	(a)	Give t subjec	wo examples each of Bosons and Fermions and state which of these is at to the exclusion principle.	[6]
	(b)	Two p (i)	particles are in a one-dimensional potential box of length <i>a</i> . Write down the wave functions of the particle systems of Bosons and Fermions.	[10]
		(ii)	Find the normalization constants in both cases.	[4]

5. The following K_{α} lines have been measured

$${}^{12}Mg \ 9.87 \overset{0}{\text{A}} \qquad {}^{16}S \ 5.36 \overset{0}{\text{A}} \\ {}^{20}Ca \ 3.35 \overset{0}{\text{A}} \qquad {}^{24}Cr \ 2.29 \overset{0}{\text{A}} \\ {}^{27}Co \ 1.79 \overset{0}{\text{A}} \qquad {}^{29}Cu \ 1.54 \overset{0}{\text{A}} \\ {}^{37}Rb \ 0.93 \overset{0}{\text{A}} \qquad {}^{74}W \ 0.21 \overset{0}{\text{A}} \end{array}$$

(a) Plot the square –root of the K_{α} - frequency against the atomic number Z of the element. [8]

- (b) From the plot :
- (i) verify the relation $\sqrt{v} = A(Z C)$, [4]
- (ii) estimate the values of A and C, [4]
- (iii) comment on this result. [4]

6. An electron in the inner most orbit of an atom of Z=26 is knocked out of the atom in a collision with an incident electron. This results in the ionization of the atom.

- (a) Describe in brief the events that will lead to the neutralization of the atom. [10]
- (b) What is the frequency of a possible K_{β} process in the above process? [10]

- END OF EXAMINATION -