NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

APPLIED PHYSICS DEPARTMENT

SPH 2205 - ATOMIC PHYSICS

BSc HONOURS PART II: MAY 2006
DURATION: 3 HOURS

ANSWER ALL QUESTIONS FROM SECTION A AND ANY 3 QUESTIONS FROM
SECTION B. SECTION A CARRIES 40 MARKS AND SECTION B CARRIES 60 MARKS.

SECTION A

1. (a) (i) Write down the ground state configuration of Lithium.
(ii) Calculate the angle between the total and orbital angular momentum for the ${ }^{4} D_{3 / 2}$ state.
(iii) Which selection rules govern the emission of spectral lines between atomic states that have quantum numbers assigned to them.
(b) Find the energy level terms corresponding to the configuration 2 s 3 p.
(c) (i) Develop the time - independent Schröedinger equation for two non- interacting identical particles.
(ii) Write down the Hamiltonian of two interacting electrons of an Helium atom.
(d) State the Lande interval rule for the energy separetion \in in terms of the quantum numbers.
(e) Evaluate the Lande factor for the ${ }^{3} P_{1}$ level in the 2p3d configuration.

SECTION B

2. (a) An electron changes its value of m_{s} from $+\frac{1}{2}$ to $-\frac{1}{2}$ as a result of an interaction with a magnetic field .
(i) Calculate the change in angular momentum.
(ii) If this happens in a magnetic field of 2 T , calculate the change in the electron's energy.
(b) (i) Given that $\mathrm{J}=\mathrm{L}+\mathrm{S}$ verify that the spin-orbit energy correction is $E_{S L}=A[j(j+1)-l(l+1)-s(s+1)]$ where A is a proportionality constant
(ii) Find values of $E_{S L}$ when $j=l \pm 1$ and $s=\frac{1}{2}$
3. (a) How does the anomalous Zeeman effect arise ?
(b) Show that the expression for the total magnetic dipole moment of an atom is $\mu=\frac{\mu_{b}}{\hbar}[L+2 S]$. Define all the quantities involved.
(c) If the oriental potential energy in a magnetic field B is
$\Delta E=\frac{\mu_{b} B}{\hbar} \frac{\left(3 J^{2}+S^{2}-L^{2}\right)}{2 J^{2}} J_{Z}=\mu_{b} g B M_{J}$, express g in terms of j, l and s and hence find g for the ${ }^{3} D_{3}$ energy level.
4. (a) Give two examples each of Bosons and Fermions and state which of these is subject to the exclusion principle.
(b) Two particles are in a one-dimensional potential box of length a.
(i) Write down the wave functions of the particle systems of Bosons and Fermions.
(ii) Find the normalization constants in both cases.
5. The following K_{α} lines have been measured

(a) Plot the square -root of the K_{α}-frequency against the atomic number Z of the element.
(b) From the plot:
(i) verify the relation $\sqrt{v}=A(Z-C)$,
(ii) estimate the values of A and C ,
(iii) comment on this result.
6. An electron in the inner most orbit of an atom of $\mathrm{Z}=26$ is knocked out of the atom in a collision with an incident electron. This results in the ionization of the atom.
(a) Describe in brief the events that will lead to the neutralization of the atom.
(b) What is the frequency of a possible K_{β} process in the above process?
