## NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

## APPLIED PHYSICS DEPARTMENT

## SPH 2206- DIGITAL ELECTRONICS

BSc HONOURS RADIOGRAPHY: PART II:

APRIL 2014 EXAMINATION

## DURATION: 3HOURS

ANSWER ALL PARTS OF QUESTION ONE IN SECTION A AND ANY THREE QUESTIONS FROM SECTION B. SECTION A CARRIES 40 MARKS AND SECTION B CARRIES 60 MARKS.
SHOW ALL YOUR STEPS CLEARLY IN ANY CALCULATION.

## SECTION A

1. (a) Briefly explain why D type flip flops are most suitable in the design of shift Registers.
(b) For the pulse shown below in Fig 1, Determine:-
(i) rise time;
(ii) fall time;
(iii) pulse width; [2]
(iv) amplitude of the waveform


Fig 1: Voltage vs time waveform graph
(c) Convert the following decimal numbers to binary, octal and hexadecimal.
(i) $\quad 749.026_{10}$
(d) Convert the following logic gate circuit in Fig 2, into a Boolean expression, writing Boolean sub-expressions for each gate output in the diagram.


Fig 2: Combinational Logic Circuit
(e) A Radiography engineer hands you a piece of paper with the following Boolean Expression.

$$
A \bar{B}+\bar{C}[A+B]
$$

Draw a logic gate circuit for this function.
(f) Suppose you needed an inverter gate in a logic circuit, but none were available. You do, however, have spare (unused) NAND gates in one of the integrated circuits.
(i) Show how you would connect a NAND gate to function as an OR gate. [4]
(ii) Use Boolean algebra to show that your solution is valid.
(g) Perform the following subtraction using the 2 's compliment method.
(i) $10101_{2}-10111_{2}$
(ii) $1111000_{2}-1111111_{2}$
(h) Compute a truth tables for the Boolean expression

$$
\begin{equation*}
\text { Output }=A+\bar{A} B \tag{2}
\end{equation*}
$$

## SECTION B

2. (a) The control logic for an x - ray heating system is to operate as follows:

During the daytime, heating is required only if the temperature falls below $68^{\circ} \mathrm{C}$. At night, heating is required only for temperatures below $62^{\circ} \mathrm{C}$. Assume that logic signals $\mathrm{D}, \mathrm{L}$, and H are available. D is high during the daytime and low at night. H is high only if the temperature is above $68^{\circ} \mathrm{C}$. L is high only if the temperature is above $62^{\circ} \mathrm{C}$. Design a logic circuit that produces an output signal F that is high only when heating is required.
(b) Define each of the following:
(i) Commutative property
(ii) Associative property
(iii) Distributive property
(c) Implement the following Boolean functions using simple AND, OR and NOT logic gates. (Do not simplify the functions):
(i) $F=\mathrm{AB}+A B C+C D$
(ii) $F=A B C+A B C+A B$
(iii) $\quad F=X Y Z(W+Y Z)+Z W+X Y$
3. (a) Examine the truth table in Fig 3 below.

| A | B | C | Output |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 0 |

Fig 3: Three input Truth Table
(i) Write both SOP and POS Boolean expressions describing the Output
(ii) Which of those Boolean expressions is simpler for this particular truth table?
(ii) Use any technique of your choice to show that the two Boolean expressions are the same.
(b) (i) What is a shift register.
(ii) Explain the operation of the following registers SISO, SIPO, PISO and PIPO.
4. (a) Define each of the following terms as used in digital electronics
(i) Encoder
(ii) Decoder
(iii) Multiplexer
(iv) De-multiplexer
(b) Design a multiplexer with four input data lines and a single output line.
(c) (i) What is meant by the word resolution in reference to an ADC or a DAC?
(ii) Why is resolution important to us, and how may it be calculated for any particular circuit knowing the number of binary bits?
5. (a) (i) Design a four-bit binary up counter circuit, using J-K flip-flops.
(ii) Explain what would happen if the upper AND gate's output is to become stuck" in the high state regardless of its input conditions.
(iii) What effect would this kind of failure have on the counter's operation?
(b) Use De - Morgan's theorems to simplify the following expressions:

$$
\begin{equation*}
F=\overline{\overline{(A+B)} \overline{(C+D)}(E+F) \overline{(G+H)}} \tag{i}
\end{equation*}
$$

(ii) $\quad F=\overline{\overline{[\bar{A}+B+C]} \overline{[A \bar{B} \bar{C} D]}}$
6. (a) (i) Compute a truth table for a full adder .
(ii) Obtain the logic expressions for the sum and carry from the truth table.
(iii) Implement the simplified logic circuit.
(b) Draw the circuit diagram of a clocked JK flip-flop using NOR gates and explain circuit action for all combinations of input states.
(c) Simplify the following using K- map
(i) $F=\sum(0,2,4,6,8,10,12,14)$
(ii) $\mathrm{F}=\Sigma(0,1,2,3,5,7,8,9,10,11)$

## THE END

