NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

APPLIED PHYSICS DEPARTMENT

SPH 2206– DIGITAL ELECTRONICS

BSc HONOURS RADIOGRAPHY: PART II:

APRIL 2014 EXAMINATION

DURATION: 3HOURS

ANSWER <u>ALL</u> PARTS OF QUESTION <u>ONE</u> IN SECTION <u>A</u> AND ANY <u>THREE</u> QUESTIONS FROM SECTION <u>B</u>. SECTION A CARRIES 40 MARKS AND SECTION B CARRIES 60 MARKS. SHOW ALL YOUR STEPS CLEARLY IN ANY CALCULATION.

SECTION A

- (ii) 657.087₁₀
- (d) Convert the following logic gate circuit in Fig 2, into a Boolean expression, writing Boolean sub-expressions for each gate output in the diagram.

Fig 2: Combinational Logic Circuit

(e) A Radiography engineer hands you a piece of paper with the following Boolean Expression.

$$AB + C[A + B]$$

Draw a logic gate circuit for this function.

- (f) Suppose you needed an inverter gate in a logic circuit, but none were available. You do, however, have spare (unused) NAND gates in one of the integrated circuits.
 - (i) Show how you would connect a NAND gate to function as an OR gate. [4]
 - (ii) Use Boolean algebra to show that your solution is valid. [4]
- (g) Perform the following subtraction using the 2's compliment method.

(i) $10101_2 - 10111_2$ [2]

- (ii) $1111000_2 1111111_2$ [2]
- (h) Compute a truth tables for the Boolean expression

 $Output = A + \overline{A}B$ [2]

[3]

[6]

[4]

SECTION B

- 2. (a) The control logic for an x - ray heating system is to operate as follows: During the daytime, heating is required only if the temperature falls below 68°C. At night, heating is required only for temperatures below 62°C. Assume that logic signals D, L, and H are available. D is high during the daytime and low at night. H is high only if the temperature is above 68^oC. L is high only if the temperature is above 62^oC. Design a logic circuit that produces an output signal F that is high only when heating is required. [9]
 - (b) Define each of the following:
 - Commutative property (i) [1]
 - (ii) Associative property [1]
 - (iii) Distributive property [1]
 - (c) Implement the following Boolean functions using simple AND, OR and NOT logic gates. (Do not simplify the functions):
 - F = AB + ABC + CD(i) [2] F = A BC + ABC + A B
 - [2] (ii) F = X Y Z (W + YZ) + ZW + X Y(iii) [4]

3. Examine the truth table in Fig 3 below. (a)

A	В	C	Output
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Fig 3: Three input Truth Table

	(i) (ii)	Write both SOP and POS Boolean expressions describing the Output Which of those Boolean expressions is simpler for this particular truth tab	[4] ole?
	(ii)	Use any technique of your choice to show that the two Boolean express are the same.	[2] sions
	(b)	 (i) What is a shift register. (ii) Explain the operation of the following registers SISO, SIPO, and PIPO. 	[5] [1] PISO
			[8]
4.	(a)	Define each of the following terms as used in digital electronics (i) Encoder (ii) Decoder (iii) Multiplexer (iv) De-multiplexer	[2] [2] [2] [2]
	(b)	Design a multiplexer with four input data lines and a single output line.	[8]
	(c)	(i) What is meant by the word <i>resolution</i> in reference to an ADC or a DAC?	[2]
		(ii) Why is resolution important to us, and how may it be calculated for any particular circuit knowing the number of binary bits?	[2]
5.	(a)	 (i) Design a four-bit binary up counter circuit, using J-K flip-flops. (ii) Explain what would happen if the upper AND gate's output is to 	[14]
		(iii) become stuck" in the high state regardless of its input conditions.(iii) What effect would this kind of failure have on the counter's operat	[2] tion? [2]
	(b)	Use De – Morgan's theorems to simplify the following expressions:	
		(i) $F = \overline{\overline{(A+B)}(C+D)(B+F)(G+H)}$	[1]
		(ii) $\mathbf{F} = \overline{\left[\overline{A} + B + C\right]} \overline{\left[A\overline{B}\overline{C}D\right]}$	[1]
6.	(a)	(i) Compute a truth table for a full adder .	[4]
		 (ii) Obtain the logic expressions for the sum and carry from the truth table. (iii) Implement the simplified logic sizewit 	[4]
	(b)	Draw the circuit diagram of a clocked JK flip-flop using NOR gates and	[2]
		explain circuit action for all combinations of input states.	[6]
	(c)	Simplify the following using K- map (i) $F = \sum (0, 2, 4, 6, 8, 10, 12, 14)$	[2]
		(ii) $F = \Sigma(0, 1, 2, 3, 5, 7, 8, 9, 10, 11)$	[2]

THE END