NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

APPLIED PHYSICS DEPARTMENT

SPH 4204 - MATERIALS SCIENCE II

BSc HONOURS PART IV: MAY 2006 DURATION: 3 HOURS

ANSWER ALL QUESTIONS FROM SECTION A AND ANY THREE QUESTIONS FROM SECTION B. SECTION A CARRIES 40 MARKS WHILE SECTION B CARRIES 60 MARKS.

SECTION A

1.	(a)	Sketch the ion arrangement on the (110) plane of ZnS and the CaF_2 structure [4]				
		(i) Compare the planar packing fraction on the (110) planes for these two metals, $r_{zn} = 0.074$ nm, $r_s = 0.184$ nm, $r_{ca} = 0.099$ nm and $r_F = 0.133$ nm.				
			[4] [3]			
	(b)	Show that $Mg_2 SiO_4$ and Fe_2SiO_4 are expected to display complete solid solubility.				
		•	[4]			
	(c)	Discuss in brief, the advantages and disadvantages of alumina, Al ₂ O ₃ , in biomedical applications. [4				
	(d)	Polytetrafluoroethylene is a polymer used to coat non-stick pans. The mo- chain differs from that of polyethylene in that fluorine atoms have replace the hydrogen atoms. Explain the non – sticky property on the basis of this				
		structure.	[4]			
	(e)	A stress of 20 MNm ⁻² is applied to a polymer serving as a fastener. At a constant applied strain, the stress drops to $15MNm^{-2}$ in 100 hours. If the stress on the component is to remain above 12 MNm ⁻² for its proper function, determine the life of the fastener. [5]				
	(f)	A cemented carbide cutting tool used for machining contains 75 wt % WC, 15 wt % TiC, 5wt %TaC, and 5wt %Co. Determine the density of the composite [5]				
	(g)	Distinguish (i) thermosetting polymers from thermoplastic polymers	[3] [3]			

SECTION B

2.	(a)	(ii) (iii)	Define and classify the different types of porosity. How is poro reduced through sintering? Give two examples of each, for lower-order and higher order fu porous ceramic bodies. Explain how the porous bodies function, using one example fro one of the categories.	[5] inctions of [2]		
	(b)	Silicon carbide has a specific gravity of 3.1gm/cm ⁻³ . A sintered silicon carbide component has a volume of 500 cm ³ and weighs 1200g in air. After soaking in water, the component weighs 1250g. Calculate				
		(i) 1	the bulk density,	[4]		
		(ii) t	true porosity,	[2]		
		(iii) 1	the fraction of each type of porosity in the component.	[2]		
	(c)	How do	pes porosity influence opacity in materials?	[2]		
3.	(a)	Discuss, from the atomic point of view, factors that determine the mechanical properties of ceramics. [5]				
	(b)	Briefly describe the CaF_2 , (calcium fluoride) structure [5]				
	(c)	A set of ceramic parts is subjected to bend tests and the stress required for failure is measured. The results obtained were as follows: 55.5 MNm ⁻² , 54.5 MNm ⁻² , MNm ⁻² , 52.4 MNm ⁻² , 56.5 MNm ⁻² , 50.3 MNm ⁻² , 53.4 MNm ⁻² , MNm ⁻² and 51.7 MNm ⁻²				
		(i)	Calculate the Weibull modulus for the material.	[6]		
		. ,	Discuss whether the material would be a good choice if one wa design a reasonably reliable component?	anted to [2]		
		(iii)	What could be the reason for such varied results?	[2]		

4.	(a)	(i)	Define the specific tensile modulus and specific tensile strength of composite material.	of a [4]	
		(ii)	Explain the significance of the 'the critical length' when disconti- fibers are used for a composite.	nuous [5]	
		(iii)	With the aid of graphs, explain the variation of the Young's mode fiber reinforced composite under isostress and isostrain condition		
	(b)	(b)		late the composite modulus for a polyester reinforced with 60 vol	
				s under isostrain conditions. The density of polyester = 6.9×10^3 Mp, ass = 72.4×10^3 MPa	, [5]
5	(a)	(i)	Define the degree of polymerization for a polymer chain.	[2]	
		(ii)	Determine the mole fraction of each component in a co-polymer consisting of 15 wt % polyvinyl acetate (PVA) and 85wt% polyv chloride (PVC).	inyl	
				[4]	
	(b)	Expla (i) (ii) (iii)	in how the elastic modulus of a polymer depends on Degree of polymerization Crystallinity Amount of covalent cross – link between chairs	[2] [2] [2]	
	(c)		are organic metals? Give one example and explain the theory d their property.	[4]	
	(d)	Write (i) (ii)	brief notes on any one of the following: self lubricating polymers, heat resistant polymers?	[4]	
		(11)	heat resistant porymers?	[4]	
6.	(a)	(i)	What is meant by the viscoelastic behavior of polymeric material	s?[4]	
		(ii)	Briefly describe the models used to explain this behavior.	[6]	
	(b)	(i)	Classify refractory materials.	[5]	
		(ii)	What are the requirements for refractory bricks that are to be use lining iron and steel blast furnaces? Explain why silica bricks are for non-highly reducing conditions being present in the kiln.		

- END OF EXAMINATION -