NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

APPLIED PHYSICS DEPARTMENT

SPH 4270 - APPLIED OPTICS II

BSc HONOURS PART IV: MAY 2006 DURATION: 3 HOURS

ANSWER <u>ALL</u> PARTS OF QUESTION <u>ONE</u> IN SECTION A AND ANY <u>THREE</u> QUESTIONS FROM SECTION B. SECTION A CARRIES 40 MARKS AND SECTION B CARRIES 60 MARKS

SECTION A

- 1. (a) (i) Define optical tooling and briefly explain why the He-Ne laser is usually preferred for this application. [3]
 - (ii) It is required to align an object to an accuracy of 1 mm at a distance of 12 m using a He-Ne laser operating at 632.8 nm. Calculate the corresponding beam divergence angle and degree of expansion required, and comment on the accuracy of laser alignment? [5]
 - (b) (i) Consider a cooperative target with a cube corner reflector with diameter 3 cm and the following measurement conditions; $P_t = 10 \text{ kW}$, $\theta_t = 10^{-2}$ radians, $R = 10^3 \text{ m}$, $d_{ta} = 10 \text{ cm}$, $d_{ra} = 10 \text{ cm}$, T = 0.8 and $\lambda = 1.06 \text{ x} 10^{-4} \text{ m}$ (Nd YAG laser). Calculate the received power Pr. [2]
 - (ii) What will be the received power P_r if a non-cooperative target with $d_{tar} = 0.2$ m and reflectivity of 0.5 is subjected to the same conditions as in (i) above. Comment on the difference in your answers. [4]
 - (c) Briefly explain how three components of velocity of a fluid can be determined at a point using Laser Doppler Velocimetry (LDV). [4]
 - (d) Spectroscopy is an analytical technique arising from the interaction of species with electromagnetic radiation. The electromagnetic radiation absorbed, emitted or scattered by the molecule is analysed to give a spectrum.
 - (i) Explain how a vibrational absorption spectrum can be obtained when a beam of radiation from a source such as a laser is passed through a sample. [4]
 - (ii) Describe molecular beam spectroscopy and explain why it is an indispensable tool in analytical chemistry. [4]

[3]

- (e) Explain the following processes/terms naming the industries that use the lasers for the purposes:
 - (i) Laser uranium enrichment

		(ii)	Angular rotation	[3]
	(f)	List four lasers used in material processing and give your preference is for metal cutting.		selecting lasers [4]
	(g)	State major	What are the [4]	
			SECTION B	
2.	(a)	(i)	Draw and label a sketch of basic design elements of a Twyman- interferometer.	Green [2]
		(ii)	 Explain how the Twyman-Green interferometer operates. Include following items in your explanation; a. Interference between emerging beams to form a fringe pattern with the eye. b. Effect on fringe pattern when an imperfect optical component mirror that reflects one of the beams, is used. c. Principal differences and similarities between the Twyman-Grinterferometer and the Michelson interferometer 	n when viewed t, such as the
	(b)	(i) (ii)	do you understand by the terms; Case depth Transition zone? would you increase these parameters?	[5]
	(c)	A CO ₂ laser of spot size A = 0.01 mm^2 impinges on a tissue. The penetration depth is $\alpha = 1000 \text{ cm}^{-1}$. If the beam is fully absorbed in a volume V = 4 x 10 ⁻⁵ cm ³ , calculate the ablation threshold density. Take L = $4/\alpha$. [5]		
3.	(a)	Starting from the expression of the polarisability α and the electric dipole moment μ , obtain the expression for the induced dipole moment and comment on three terms in the obtained equation. [6]		
	(b)	State	and describe any two applications of holography you know.	[8]
	(c)	Expla	ain with the aid of a diagram Atomic Absorption Spectroscopy	[4]
	(d)	In las	er remote sensing, what are the physical properties that are usuall	y measured? [2]
4.	(a)	Explain how a Police Laser gun (LIDAR) works? How can you avoid a speeding ticket? [5]		
	(b)	Distin (i) (ii)	nguish the following using a clear example: Circuit switched and, Packet switched networks.	[2]

(c) It is required to drill a 0.5mm diameter hole in a nickel sheet 1mm thick using a Nd - YAG laser with a 5kW peak power. Estimate the pulse length required. [4] Describe the method used to treat (d) (i) Malignant tumours. (ii) Blockage of arteries by atherosclerotic plague, and [9] (iii) Urinary stones. 5. What is Lawson's criterion for sustaining a fusion reaction? Calculate the value of (a) $n\tau$, given the following parameters: The ignition energy = 44 keV, Energy yield per reaction = 17,6 MeV and the product of the cross-section and velocity of the particle = 10^{-25} m³s⁻¹. Derive the formular you will use. [8] (b) (i) What are the advantages of Wave Division Multiplexing (WDM) over Time Division Multiplexing (TDM) in high-speed data transmission networks. [3] (ii) In your own opinion what are the fundamental limitations in utilising the bandwidth offered by the optical fibre? Is the full bandwidth utilisation achievable? Explain [5] A CO_2 laser beam operating at 10.6 μ m has a beam diameter of 2.5 mm. A convex (c) lens of focal length 150 mm focuses the beam. If 15 % variation in w(z) can be tolerated, calculate the depth of focus. Explain the term depth of focus. [4] 6. Explain the Raman effect. Starting from an expression for rotational term values show (a) that; $|\Delta v| = (4B_0 - 6D_0) (J + 3/2) - 8D_0 (J + 3/2)^3$ for rotational Raman transitions of a diatomic or linear polyatomic molecule. Describe the inertial confinement technique used to generate electrical power. Give (b) necessary reactions. [6] (c) Describe differential Absorption Lidar used to monitor air pollution and briefly explain how a nitrogen gas laser can be used to track crude oil spillage in a river. [8]

- END OF EXAMINATION -