NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY SCS 1102

FACULTY OF APPLIED SCIENCES

DEPARTMENT OF COMPUTER SCIENCE

MATHEMATICAL FOUNDATIONS OF COMPUTING SCIENCE

DECEMBER 2004

Time: 3 hours

Candidates should attempt **ALL** questions from Section A and **ANY THREE** questions from Section B.

SECTION A: Answer ALL questions in this section [40].

- A1. Define the following
 - (a) a relation from set A to set B.
 - (b) function from set A to set B.
 - (c) an injective function from set A to set B.

[2,2,2]

- **A2.** In how many ways can the symbols a, b, c, d, e, e, e, e, e be arranged so that no e is adjacent to another e. [5]
- **A3.** Let I be an index set where $\forall i \in I, A_i \subseteq \mathcal{U}$. Prove that

$$\left(\bigcup_{i\in I}A_i\right)^c=\bigcap_{i\in I}A_i^c.$$

[6]

- A4. A certain "Burger Joint" advertises that a customer can have his or her hamburger with or without any or all of the following: ketchup, mustard, mayonnaise, lettuce, tomato, onion, pickle, cheese, or mushrooms. How many different kinds of hamburger orders are possible?
- **A5.** Let $A = \{1, 2, 3, 4\}$ and $B = \{x, y, z\}$.
 - (a) List 5 functions from A to B.
 - (b) How many relations from A to B are there?
 - (c) How many functions $f: A \mapsto B$ are there?
 - (d) How many functions $f: A \mapsto B$ are one-to-one?
 - (e) How many functions $f: A \mapsto B$ satisfy f(1) = x?

[2,2,2,3,3]

A6. Find the value(s) of n for which $^{n}P_{3} = 3 \cdot ^{n}P_{2}$.

[5]

SECTION B: Answer THREE questions in this section [60].

- **B7.** (a) If $A = \{1, 2, 3, 4, 5\}$ and there are 6720 injective functions $f: A \to B$, what is |B|?
 - (b) Let $f: X \to Y$, and $\forall i \in I$, let $A_i \subseteq X$. Prove that

$$f\left(\bigcap_{i\in I}A_i\right)\subseteq\bigcap_{i\in I}f(A_i).$$

[5]

(c) (i) Define an invertible function $f: A \to B$.

- [3]
- (ii) Prove that a function $f: A \to B$ is invertible if and only if it is a bijective function. [8]
- **B8.** (a) Given $\mathcal{U} = \mathbb{R}$ and $I = \mathbb{R}^+$. If for each $r \in \mathbb{R}^+$, $A_r = (-1/r, 1/r)$, find
 - (i) $\bigcup_{n \in I} A_n$
 - (ii) $\bigcap_{r \in X} A_r$.

[2,2]

(b) Let $\mathcal{U} = \{a, b, c, \dots, z\}$ with $A = \{a, b, c\}, C = \{a, b, d, e\}$. If $|A \cap B| = 2$ and $(A \cap B) \subset B \subset C$, determine B.

(c) Prove that

$$A \times (B \cup C) = (A \times B) \cup (A \times C).$$

[6]

(d) Given that $E_{\alpha}, \alpha \in I$, is a class of subsets of X, prove that

$$X \cap \left(\bigcup_{\alpha \in I} E_{\alpha}\right)^{c} = \bigcap_{\alpha \in I} (X \cap E_{\alpha}^{c}).$$

[7]

- **B9.** (a) Prove that $(\neg P \lor Q) \land (P \land (P \land Q)) \Leftrightarrow (P \land Q)$. Write the dual of this result. [7]
 - (b) Negate each of the following and simplify the resulting proposition:
 - (i) $P \Rightarrow (\neg Q \land R)$

(ii)
$$P \lor Q \lor (\neg P \land \neg Q \land R)$$
. [3,4]

(c) Construct a truth table for the following proposition:

$$[(P \Rightarrow Q) \land (Q \Rightarrow R)] \Rightarrow (P \Rightarrow R).$$

Is this statement a tautology?

[6]

B10. (a) Show that if n is an integer, with $n \ge 1$, then

$$\left(\begin{array}{c}2n\\n\end{array}\right)+\left(\begin{array}{c}2n\\n-1\end{array}\right)=\left(\begin{array}{c}2n+2\\n+1\end{array}\right)$$

[6]

- (b) How many permutations are there of all the letters in SOCIOLOGICAL? In how many of these are the letters A and G adjacent? [6]
- (c) In how many ways can 12 different books be distibuted among four children so that
 - (i) each child gets 3 books?
 - (ii) the 2 oldest children get 4 books each while the two youngest get 2 books each? [3.5]

END OF QUESTION PAPER