NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY FACULTY OF APPLIED SCIENCE

COMPUTER SCIENCE DEPARTMENT DECEMBER EXAMINATIONS 2005

MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE SUBJECT: SCS1102

CODE:

INSTRUCTION TO CANDIDATES

This paper consists of \underline{SEVEN} questions. Chose \underline{FIVE} questions.

		Time: 3 hours
QUE	STION ONE	
i.	List all elements of the following two sets: a) $\{x \in \mathbb{Z} \mid x^2 < 85\}$ b) $\{x \in \mathbb{N} \mid x \text{ is a prime number less than } 50\}$	[2] [2]
ii.	Use the set builder method to describe the following two sets: a) {0, 5, 10, 15, 20} b) {2}	[2] [2]
iii.	Let A.B.C. be the following sets: A= $\{a, b, c\}$. B= $\{x \in \mathbb{Z} \mid 0 \le x < 3\}$	· <u>.</u>
	$C = \{x \in \mathbb{Z} \mid 0 < x \le 3\}$. Find the following sets:	
	a. B ∩ C	[2]
	b. $A \times (B \cap C)$	[2]
	c. A×B	[3]
	d. $A \times C$ e. $(A \times B) \cap (A \times C)$	[3] [2]
QUE	STION TWO	
A gar	mbler has 4 coins in her pocket. Two are double-headed, one is doubles normal. The coins cannot be distinguished unless one looks at ther	ole-tailed, and
(a)	The gambler shuts her eyes, chooses a coin at random, and tosses it. What is the probability that the lower face of the coin is heads?	
(b)	She opens her eyes and sees that the upper face of the coin is a head. What is the	
(c)	Now, after having seen that the upper face is a head, she shuts her picks up the same coin, and tosses it a second time. What is the problem the lower face is a head?	[5] r eyes again, robability that [6]

(d) After her second toss (as described in part (c)), she opens her eyes and sees that the upper face is a head. What is the probability that the lower face is a head?

QUESTION THREE

i. Why the following assignments from $\mathbb Z$ to $\mathbb Q$ are not functions:

a)
$$f(x) = \frac{1}{(x^2 - 4)}$$
 [4]
b) $f(x) = \pm x^2$

[4]

ii. Let A. B. C and D be the following sets:

$$A=\{(x,y)\in\mathbb{Q}^2\mid y=x^2\}$$

$$B=\{(x,y)\in\mathbb{Q}^2\mid y=x+2\}$$

$$C=\{(x,y)\in\mathbb{Q}^2\mid y=2\}$$

$$D=\{(x,y)\in\mathbb{Q}^2\mid x^2+y^2=20\}$$

Find each of the following sets:

- a) $A \cap B$
- b) A ∩ C
- c) $B \cap C$
- e) $C \cap D$
- f) $A \cap D \cap (B \cup C)$

[1.1.1.1.3]

[8]

iii. Determine whether the following function from $\mathbb R$ to $\mathbb R$ is one-to-one, onto, both (i.e., a bijection), or neither:

 $G(x)=x^2-1$

[4]

QUESTION FOUR

Use truth tables to prove the following logical equivalences:

a) $p \vee q \equiv (p \rightarrow \sim p) \rightarrow \sim (q \rightarrow \sim q)$

[5]

b)
$$p \vee q \equiv (p \rightarrow \neg q) \rightarrow \neg (q \rightarrow \neg q)$$

[5]

Let R be the following relation on R:

00014 13 200 1

 $x R y . x -y \in \mathbb{Z}$.

Prove that R is an equivalence relation.

[10]

QUESTION FIVE

We have two coins. One of them is fair, i.e., the probabilities of head and tails are both equal to ½. The other one is loaded, so that the probability of getting tails after tossing it is 1/3 and the probability of head is 2/3. We choose one of the coins at random (with probability ½) and toss it.

a) What is the probability of getting "Tails"?

b) Assume we get "tails". What is the probability that coin we just tossed is

- How many strings can be formed by ordering the letters of NORTHWESTERN so that all Es appear between the 2 Ns?
- Solve the following recurrence:

 $x_n = x_{n-1} + 2x_{n-2} : x_0 = 0; x_1 = 3.$

[5]

QUESTION SIX

- i. Let $f: \Re \to \Re^3$ and $g: \Re^3 \to \Re$ be the following functions:
- a) f(x) = (x,x,x)
- b) g(x,y,z) = x+y+z

1. Find g o f.

2. Find fog.

- 3. Determine if g o f is one-to-one, onto or bijective and in the latter case,
- 4. Same question (3) for f o g.

[5]

11