NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

FACULTY OF APPLIED SCIENCE

COMPUTER SCIENCE DEPARTMENT

APRIL EXAMINATIONS 2009

SUBJECT: **OPERATING SYSTEM CONCEPTS**

CODE: SCS1103

INSTRUCTION TO CANDIDATES

The question paper contains six questions. Answer any five questions All questions carry equal marks.

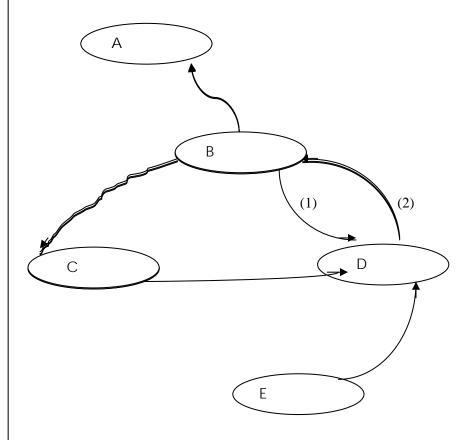
3 HOURS

QUESTION ONE

- a) List four types of Operating Systems briefly explaining each. [8]
- b) Outline the role of the Operating System in memory management. [6]
- c) Write DOS commands that do the following:
 - (i) create a directory
 - (ii) delete a file called **symptom.txt**
 - (iii) change a directory
 - (iv) remove a directory [4] [2]
- d) Explain what a kernel of an Operating system is.

QUESTION TWO

- a) With the help of a relevant illustration, explain the Bankers Algorithm. [10]
- Discuss **processes** and **threads** clearly showing similarities and differences between the two concepts. **b**) [10]


QUESTION THREE

a)	Explain the bootstrap process of acomputer with Windows 95 as the Operating System	[4]
b)	Outline differences of a Unix like OS and Windows NT in file management.	[8]
c)	What is a deadlock? What are conditions that must hold for a deadlock to occur?	[6]
d)	Explain the concept of Direct Memory Addressing.	[2]

OLIECTION FOLD			
Ųι	JESTION FOUR		
a)	In what way does multiprogramming and relocation affect the loading of machine code into a component memory?	uter's mair [6]	
b)	Explain the following terms: (i) Segmentation		
	(ii) Paging		
	(iii) Swapping	[3]	
c)	Outline three disk scheduling algorithms.	[3]	
d)	With the aid of a diagram, show the memory hierarchy of a computer	[6]	
e)	What is a device driver? How does it work?	[2]	
ΟĪ	HECTION FINE		
Ųι	JESTION FIVE		
a)	Explain the stack concept used in a microprocessor. Which operation needs to use stack in order to	_	
b)	correctly?	[4]	
b)	(i) Define race conditions	[2]	
	(ii) Discuss two methods that can be used to prevent race conditions	[4]	
c)	Explain available file access methods clearly showing their similarities and differences where necessary.		
C)	Explain available the access methods clearly showing their similarities and differences where necessity	ary.	
		[6]	
d)	Distinguish between user level threads and kernel level threads.	[3]	
d)	Which file structure would you prefer if the only thinggg that matters is access speed?	[1]	

QUESTION SIX

The diagram below shows transition between processes.

- a) (i) Show the status of processes labelled A to E [5]
 - (ii) Explain the transitions represented by (1) and (2) [2]
- b) Explain the difference between preemptive and non-preemptive scheduling algorithms. [4]
- c) With as much detail as possible, discuss how an I/O request is served in Windows NT. [5]
- d) What is an interrupt and in what circumstances is it used? [4]

END OF QUESTION PAPER