NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY FACULTY OF APPLIED SCIENCE

COMPUTER SCIENCE DEPARTMENT

AUGUST EXAMINATIONS 2009

SUBJECT: LOGIC DESIGN AND SWITCHING CIRCUITS

CODE: SCS1204

INSTRUCTIONS TO CANDIDATES

The Question paper contains **six** questions. Answer any **five**. All questions carry equal marks

3 hours

QUESTION ONE

a)	Describe the operational characteristics of a clocked D latch.	[5]
b)	Calculate the number of flip-flops needed to design a counter that can count to denary	128.
		[3]
c)	Highlight five salient features of TTL and CMOS based integrated circuits	[10]
d)	a) Reduce the following boolean equation to its simplest form	
	$\mathbf{F} = (\mathbf{A}\mathbf{B} + \mathbf{C}) \ (\mathbf{B} + \overline{\mathbf{C}}\mathbf{D})$	[2]

QUESTION TWO

The following diagram represents a circuit made out of a combination of four logic gates.

a)	(i) Obtain a truth table of the above circuit.	[8]
	(ii)From your observation on the truth table, what is the effect of the \mathbf{C} input?	[2]
	(iii) Name a device that can be implemented by using the above circuit.	[1]
b)	The table below is a function table of a logical system which is being designed.	

А	В	С	Output
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

- (i) Obtain an expression that represents the sum of products. [4]
- (ii) Simplify the resultant sum of products expression and draw a circuit diagram which represents your simplified expression. [5]

QUESTION THREE

a) Give a detailed explanation of the following concepts as used in switching circuits.

(i)	Fan out	
(ii)	Combinational circuit	
(iii)	Clock	
(iv)	Race conditions	[4]
With the	aid of a diagram, give a detailed explanation of a full adder.	[10]
Show you two.	ar understanding of <i>two's complement</i> by subtracting denary 11 from 21 in	base [3]
Convert	10111101100_{two} to hexadecimal.	[3]

QUESTION FOUR

b)

c)

d)

The illustration below shows a circuit which is under design and the proposed function table for the design.

X	Y	Out
0	0	1
0	1	1
1	0	0
1	1	1

- a) With aid of a Karnaugh map, show a combination of logic gates that result from the analysis of the above diagram. [10]
- b) State de Morgan's theorems and show the said theorems in a graphic form (Draw diagrams).

[4]

c) NOR gates are often referred to as universal logic gates. Explain. [6]

QUESTION FIVE

The diagram below shows a J K flip-flop with a reset capability that can be used as a building block of a counter.

- a) (i) What should be the logic level of the J and K inputs in order for the flip-flop to toggle on the clock pulses? [2]
 - (ii) Clearly showing your outputs, design a ripple counter that will count to 8 giving the following output waveform:

