NATI ONAL UNI VERSI TY OF SCI ENCE AND TECHNOLOGY FACULTY OF APPLIED SCI ENCE COMPUTER SCIENCE DEPARTMENT
 AUGUST EXAMI NATI ONS 2009
 SUBJECT: LOGIC DESIGN AND SWITCHING CIRCUITS CODE: SCS1204

INSTRUCTIONS TO CANDIDATES
The Question paper contains six questions. Answer any five.
All questions carry equal marks

QUESTION ONE

a) Describe the operational characteristics of a clocked D latch.
[5]
b) Calculate the number of flip-flops needed to design a counter that can count to denary 128 .
c) Highlight five salient features of TTL and CMOS based integrated circuits
d) a) Reduce the following boolean equation to its simplest form

$$
\begin{equation*}
\mathrm{F}=(\mathrm{AB}+\mathrm{C})(\mathrm{B}+\overline{\mathrm{C}} \mathrm{D}) \tag{2}
\end{equation*}
$$

QUESTION TWO

The following diagram represents a circuit made out of a combination of four logic gates.

a) (i) Obtain a truth table of the above circuit.
(ii)From your observation on the truth table, what is the effect of the \mathbf{C} input?
(iii) Name a device that can be implemented by using the above circuit.
b) The table below is a function table of a logical system which is being designed.

A	B	C	Output
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

(i) Obtain an expression that represents the sum of products.
(ii) Simplify the resultant sum of products expression and draw a circuit diagram which represents your simplified expression.

QUESTION THREE

a) Give a detailed explanation of the following concepts as used in switching circuits.
(i) Fan out
(ii) Combinational circuit
(iii) Clock
(iv) Race conditions
b) With the aid of a diagram, give a detailed explanation of a full adder.
c) Show your understanding of two's complement by subtracting denary 11 from 21 in base two.
d) Convert ${110111101100_{\text {two }}}$ to hexadecimal.

QUESTION FOUR

The illustration below shows a circuit which is under design and the proposed function table for the design.

\mathbf{X}	\mathbf{Y}	Out
0	0	1
0	1	1
1	0	0
1	1	1

a) With aid of a Karnaugh map, show a combination of logic gates that result from the analysis of the above diagram.
b) State de Morgan's theorems and show the said theorems in a graphic form (Draw diagrams).
c) NOR gates are often referred to as universal logic gates. Explain.

QUESTION FIVE

The diagram below shows a J K flip-flop with a reset capability that can be used as a building block of a counter.

a) (i) What should be the logic level of the J and K inputs in order for the flip-flop to toggle on the clock pulses?
[2]
(ii) Clearly showing your outputs, design a ripple counter that will count to 8 giving the following output waveform:

[6]
(iii) Explain how your counter can be adopted to be a countdown counter.
(iv) What will be the effect of placing a logic zero on the reset button?
b) Clearly distinguish between bistable, monostable and astable multivibrators. Which of the multivibrators is also called the one shot?

QUESTION SIX

a) Using your knowledge of the NE555 integrated circuit, show how it can be wired to produce a waveform suitable for a clock signal of a ripple counter.
b) Draw a gated SR latch and explain the benefit of gating the latch.

END OF QUESIION PAPER

