NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY FACULTY OF APPLIED SCIENCES COMPLITER SCIENCE DEPARTMENT						
MAY EXAMINATIONS 2011						
SUBJECT: LOGIC DESIGN AND SWITCHING CIRCUITS CODE: SCS 1204						
INSTRUCTIONS TO CANDIDATES This examination paper consists of SEVEN (7) questions, all questions carry equal marks. Answer any FIVE (5) questions	Time: 3 hours					
QUESTION ONE a) Describe the following concepts:	[2]					
ii. Fan-out	[2]					
b) Distinguish between:	[-]					
i. Overflow and carry-over when these terms are applied	to two's					
compliment arithmetic on n bit words.	[2]					
ii. Negative and Positive Logic	[2]					
iii. SIPO and PIPO shift registers	[2]					
c) With the aid of a diagram, give a detailed explanation of a full adder.	[10]					
QUESTION TWO						
a) Using 8 bit words, represent the number –99 using:						
i. The Signed Magnitude representation	[2]					
ii. The Two's compliment representation	[3]					
iii. State and explain the properties of two's complement representation.	number [5]					
 b) A logic device has 4 input lines (A, B, C and D) that accept natural number range 0000₂ to 1111₂ so as to represent decimal numbers 0 to output (R) of the circuit is true if the input to the circuit represents number and is false otherwise. i. Design the truth table for this circuit 	umbers in 5 15. The 5 a prime [4]					
i. Design the truth table for this circuit	ction [6]					
in besign a circuit using AND, on and NOT gates to carry out this full						

 QUESTION THREE a) i State and explain De Morgan's theorems ii Using De Morgan's theorems, reduce the following expression to its simplest 					[3]	
R = (AB +	C) (E	8 + C	D)		[3]
iii Using Boolean theorems, si	mplify	the	follov	ving e	expression:	
	ĀBO		BC			[4]
b) Given the Karnaugh map below the corresponding logic circuit	v, gen :	erate	e a si	mplif	ied SOP expression and draw	
AB\CD	00	01	11	10		
00	1	0	0	1		
01	0	0	0	0	•	
11	0	0	1	1		
10	1	1	1	1		[7]
					.	101
c) Compare and contrast the Karn	augn	мар	and	the I	ruth Table.	[3]
QUESTION FOUR a) Figure 1 shows the timing diagram of a positive edge triggered gated D latch.						
E			_			
Q			-			
σ						
4						
	Fig	gure	1			
i. Explain the relations	nip be	twee	n D a	and E	, , ,	[3]
ii. Obtain a function tab	le wh	ich ir	nvolv	es D ,	E and Q and $\overline{\mathbf{Q}}$	[4]
iii. Draw the timing di	iagran	n of	the	sam	ne latch if it was <i>negative</i>	[3]
b) Derive the excitation tables of t	the fo	llowi	na fli	n-flor)S'	[]]
i D flin flon			iig iii	ы пор		[4]
ii LK flin- flon						[6]
קטוי∍קוויא נ						[0]

QUESTION FIVE a) Give brief descriptions and applications of the following devices i. Multiplexers ii. Encoders iii. Code converter iv. Decoders	[4] [4] [4] [4]
b) Explain why NOR gates are often referred to as universal logic gates.	[4]
QUESTION SIX a) Discuss in detail the following logic technologies: i. TTL ii. CMOS	[5] [5]
b) Draw the TTL internal structure of an XOR gate.	[10]

QUESTION SEVEN

An automatic vending machine dispenses a cup of coffee or soup (depending on the customer's choice). Before it delivers coffee or soup, some money (coins) must have been put in, the button for the corresponding choice must have been pressed.

Taking your inputs as coffee button (C), money button (M) and soup button (S), devise a logic gate system for the decision making strategy of the vending machine by coming up with a relevant truth table and drawing a suitable circuit diagram.

[20]

END OF QUESTION PAPER