NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

FACULTY OF APPLIED SCIENCE

COMPUTER SCIENCE DEPARTMENT AUGUST SUPPLEMENTS EXAMINATIONS 2004

SUBJECT: ALGORITHMS AND DATA STRUCTURES

CODE:

SCS2103

INSTRUCTION TO CANDIDATES

Answer any 5 questions Write all code in C

3 HOURS

QUESTION ONE

Write a C program to implement a linked circular queue. The queue should maintain details of incoming telephone calls. Each queue item should include a telephone number and a time of arrival. Include the following functions in your implementation

(a)	enqueue, to add an item to the end of the queue		[5]
(b)	dequeue, to remove the first item from the queue		[5]
(c)	count, to return the number of items in the queue		[5]
(d)	display to display the items in the queue.		[5]
	- · · · · · · · · · · · · · · · · · · ·		L-1

QUESTION TWO

Write a C program, which is a dynamic tree arrangement. Each list item should include an integer, and the number of times that particular integer has been entered into the tree.

(a) Provide a suitable declaration for the struct that describes each tree node.(b) Provide a suitable declaration for the storage array.	[2] [1]				
Implement the following functions:					
(c) insert, to add an integer to the tree	[5]				
(d) count, to return the number of nodes in the tree	[3]				
(e) preorder, to perform a preorder traversal of the tree	[3]				
(f) inorder, to perform an inorder traversal of the tree	[3]				
(g) postorder, to perform a postorder traversal of the tree	[3]				
NB: Your visits to each node should print out the integer stored there, as well as the					
number of times each integer was inserted into the tree					

QUESTION THREE

Write a C function which appends a static list to another static list to produce a resulting list. The function should not destroy the original lists. [20]

QUESTION FOUR

Compare and contrast the time complexity of the following internal sorting algorithms using a model of execution of your choice and summarize using the Big-O notation.

```
Algorithm 1:
void straight_insertion(float a[], int n) {
      int i, j;
      T temp;
      for (i = 1; i < n; i++) {
            temp = a[i];
            j = i;
            while (temp < a[j-1]) {
                   a[j] = a[j-1];
                   j--;
            a[j] = temp;
      }
}
and
Algorithm 2:
void bubble sort(float a[], int n) {
      int i, j;
      T temp;
      for (i = 1; i < n; i++) {
            for (j = n-1; j >= i; j--) {
                   if (a[j-1] > a[j]) {
                         temp = a[j-1];
                         a[j-1] = a[j];
                         a[j] = temp;
                   }
            }
      }
}
```

[20]

QUESTION FIVE Implement a dynamic stack of floats. Be sure to include the following operations: (a) Push, to add an element to the top of the stack. [5] (b) Top, to return the value stored at the top of the stack. [5] (c) Pop, to remove and return the top-most value in the stack. [5] (d) Height, to return the number of nodes in the stack. [5] **QUESTION SIX** (a) Write a C program to implement a linked list. Include the following operations using recursive implementations Append [3] (i) [4] Delete (ii) Display [3] (iii) (b) Write a function to append one linked list to another. [10] **QUESTION SEVEN**

(a) Provide a detailed description of the Big-O notation.

(b) Explain how it may be used with respect to an algorithm of your choice.

END OF QUESTION PAPER

GOOD LUCK!

[6]

[14]