NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY FACULTY OF APPLIED SCIENCES COMPUTER SCIENCE DEPARTMENT MAY EXAMINATIONS 2011

SUBJECT: DATA STRUCTURES AND ALGORITHMS CODE: SCS2103

INSTRUCTION TO CANDIDATES

This question paper consists of five (5) questions. Answer any four (4) questions. Each question carries 25 marks.

Time: 3 hours

QUESTION ONE

a) An Algorithm is defined as an ordered set of unambiguous, executable defining a terminating process in problem solving. Explain the meanin following as used in this definition:	
i) Ordered set of unambiguous steps	[3]
ii) Executable steps iii) Terminating process	[3] [3]
b) With the aid of examples, explain the following types of algorithms	
i) Backtracking algorithmsii) Recursive algorithms	[5] [5]
c) List any three properties of algorithms.	[3]
d) Give reasons why it is important to analyse algorithms.	[3]
QUESTION TWO	
a) Explain how the efficiency of an algorithm is measured.	[5]
 b) Describe the following as they are used in algorithms performance: i) Worst case 	[3]
ii) Best case	[3]
iii) Upper Bounds	[3]
c) Evaluate the Greedy algorithm.	[5]

d) Given a sequence data structure M, as shown in the figure 2.1 below.
 M

MA	В	С	D
Figure 2.1: Sequence data structure.			

The operations **Add**, **Set** and **Remove** are carried out on **M**. Draw the resultant **M** for each of the following:

[2] [2]

[2]

[3]

[3

[4] [4]

[2]

i)	Add(2,X	,M)

İ	i)	Set(3,Y,M)	

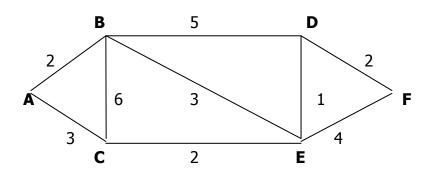
iii) Remove(A,M)

QUESTION THREE

- a) Describe these coding methods:
 - i) Fixed-length code
 - ii) Huffman code
 - iii)
- b) The table below shows the character data file that we wish to store. The file contains only five characters with corresponding character bits allocation and frequencies.

	р	q	r	S	t
Frequency	55 000	14 000	13 000	15 000	9 000
Fixed length	000	0001	010	011	100
Variable length	0	101	100	111	1101

i) Calculate the space in bits that is required to store the file using


- a) Fixed length code
- b) Prefix code
- ii) Express the space saved as a percentage
- c) Given the set {a, b, c} with the following codes: {a = 00, b = 01, c = 10} Encode the letters

i)	aab	[1]
ii)	abc	[1]
iii)	aabbcc	[1]

d) Describe an array data structure and give a class declaration for such a structure. [6]

QUESTION FOUR

- a) Let $X = \{a/20, b/15, c/5, d/15, e/65\}$ be the alphabet and its frequency distribution.
 - i) Using this distribution obtain the Huffman tree. [8] [4]
 - ii) Explain why Huffman codes are optimal.
- b) Using Prim's algorithm with explanations in each step, find the minimum spanning tree in the following weighted graph. A, B, C, D, E and F are vertices and 1, 2, 3, 4, 5 and 6 are weights. [7]

[6]

c) Evaluate Dijkstra's algorithms.

QUESTION FIVE

The code in Figure 5 is that of a stack data structure.

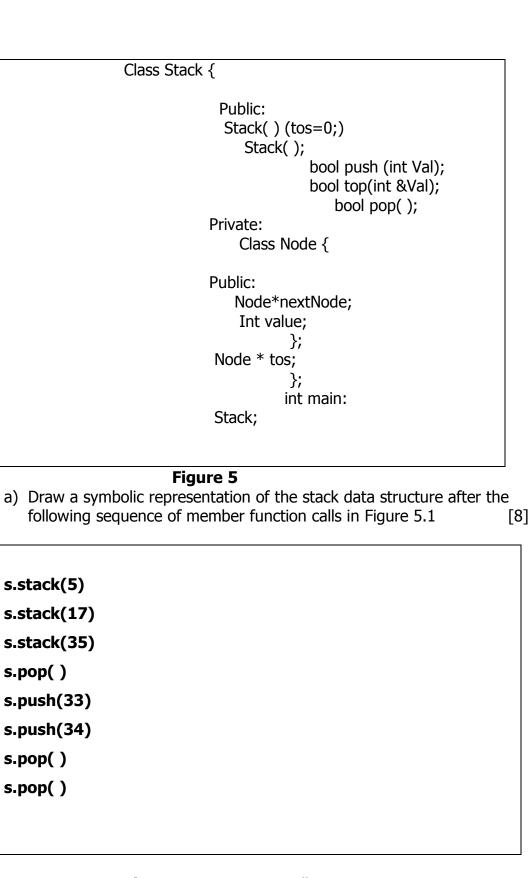


Figure 5.1 : Function calls

- b) Explain the advantage of implementing a stack using a dynamic memory allocation as opposed to a static memory allocation. [5]
- c) Describe a queue data structure and give a class declaration for such a structure. [8]
- d) List four applications of the Queue data structure. [4]

