NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY FACULTY OF APPLIED SCIENCE COMPUTER SCIENCE DEPARTMENT DECEMBER EXAMINATIONS 2001

SUBJECT: LANGUAGE FORMALISM AND SOFTWARE METHODOLOGY ##

CODE: SCS 4103

INSTRUCTION TO CANDIDATES

"LIBRACY USE ONLY"

Answer any five (5) questions Each question carries 20 marks

Time: 3 hours

QUESTION ONE

A computer with 4-bit instruction and 12-bit mantissa including one bit for sign has to be programmed in machine language for computing the following expression:

$$((x+a)-c)^{\wedge}d)/(x+a)$$

Assuming the following instruction set, write a machine language program and also show the data store, intermediate result storage and fir al result in machine code language when x=5, a=4, c=3 and d=2.

Instruction set

 0000 ---- data
 0101 ---- add

 0001 ---- read
 0110 ---- subtract

 0010 ---- write
 0111 ---- multiply

 0011 ---- move
 1000 ---- divide

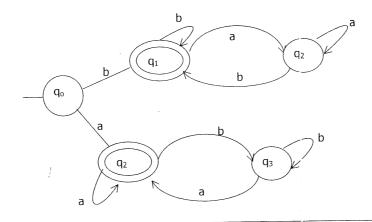
 0100 ---- store
 1001 ---- exponential

1111 ---- end [20]

QUESTION TWO

Explain briefly the following terms in relationship to programming. Include in your explanation the merits and demerits of each.

- [4] Machine language a)
- [4] Assembly language b)
- [4] Macro c)
- [4] High level language d)
- [4] stubs e)


QUESTION THREE

- With the help of a diagram outline the phases of the compiler. [10] a)
- Compare and contrast FORTRAN compiler and C compiler. [10] b)

QUESTION FOUR

For the transition diagram given below:

- [14] Write a code for it. a)
- Describe fully the machine defined by that transaction diagram [6] b)

QUESTION FIVE

Explain how â' Non Finite Deterministic and Automata can be converted to finite deterministic automata [20]

QUESTION SIX

With the help of an example illustrate how the stack implementation of shift-reducing Parsing operates. [20]

QUESTION SEVEN

The Parsing table for an LR parser for the grammar

- i) $E \rightarrow E + T$
- ii) $E \rightarrow T$
- iii) $T \to T * F$
- iv) $T \to F$
- V) $F \rightarrow (E)$
- $Vi) \qquad F \to id$

is shown in figure 7.1

STATE	ACTION						GOTO		
	1d	+	*	()	\$	Ε	T	F
0	S5			S4			1	2	3
1		S6				acc			
2 3		r2	S7		R2	r2			
3		r4	R4		R4	r4			
4	S5			S4			8	2	3
5		r6	r6		R6	r6			
6	S5			S4				9	3
7	S5			S4 S4					10
8		S6			S11				
9		r1	S7		R1	r1			
10		r3	R3		r3	r3			
11		r5	R5		. r5	r5			

Show the sequence of stack and input contents of the moves made by the parse on input 1d*1d+1d. [20]

END OF QUESTION PAPER

GOOD LUCK!