NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY FACULTY OF APPLIED SCIENCES

COMPUTER SCIENCE DEPARTMENT DECEMBER EXAMINATIONS 2002

SUBJECT: LANGUAGE FORMALISM & SOFTWARE METHODOLOGY II

CODE: SCS 4103

INSTRUCTION TO CANDIDATES

Answer any 5 questions. Each question carries 20 marks

Time: 3 hours

QUESTION ONE

a) Distinguish between compilers and interpreters.

[4]

- b) Outline briefly the advantages of high level languages over machine language. [6]
- c) Describe storage management with reference to the following:
 - i. Static storage allocation
 - ii. Dynamic storage allocation

[6]

d) With an example, explain the term "Macro".

[4]

QUESTION TWO

Write a machine language program for computing values of the expression:

$$\frac{a^3}{b^2} + \frac{c^3 + d}{\frac{a^3}{b^2}}$$

Using the instruction given below. Also for values of a=4, b=2, c=5 and d=3, show the data storage, temporary results storage and the final result.

0 0 0 0 0 - - - Data 0 0 0 1 - - - Write 0 0 1 1 0 - - - Move 0 1 0 0 - - - Store 0 1 0 1 - - - Add 0 1 1 0 7 - - Subtract

0 1 1 1 - - - - Multiply 1 0 0 0 - - - - Divide 1 0 0 1 - - - Exponential

1 1 1 1 - - - End.

[20]

1

QUESTION THREE

The general form of machine M is (Q, E, d, q, F)

- [10]
- (a) Explain the terms in the brackets
 (b) The formal description of machine M is:

 $(\{q_1, q_2, q_3, q_4, q_5\}, \{0,1\}, d, q_1, \{q_5\})$ where d is given by

State	Input				
	0	1			
q ₁	q ₂	q_3			
q_2	q_2	da			
q_3	q_2	q_3			
q 4	q_2	q_5			
q ₅	q_2	q_4			

Draw the state diagram and give the name of the state when the (i) following are the input strings:

(a)	0	1	0	1	0	1	1	0	0
(b)									
(c)	1	Ω	1	0	0	0	1	1	0

[10]

QUESTION FOUR

For the regular expression (0/1)*011, construct an NFA and then develop a DFA [20] using the transition table.

QUESTION FIVE

a) Considering the following grammer:

$$|E * E|(E)|-E|E\uparrow E|1d|E|E$$

Demonstrate, with a table, how the shift-reduce parser will react, when the input string is:

$$\frac{(1d_1 \uparrow 1d_2 - 1d_3)}{1d_4 + 1d_5}$$

[15]

- b) State the four actions that a shift-reduce parser can make.
- [5]

QUESTION SIX

Explain how a Non Finite Deterministic and Automata can be converted to finite deterministic automata,

QUESTION SEVEN

a) For the assignment statement

x=(r*d)+(c*d)/(-y*-z)

- i. Draw the syntax tree [4]
- ii. Give the two types of representations for the syntax tree [6]
- b) Define a programming language according to its
 - i. Syntax [5]
 - ii. Semantics [3]
- c) With the aid of examples, define the term 'token'. [2]

END OF QUESTION PAPER

.5