NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY FACULTY OF APPLIED SCIENCE COMPUTER SCIENCE DEPARTMENT MAY EXAMINATIONS 2002

SUBJECT: ADVANCED ARCHITECTURE AND OPERATING SYSTEMS SCS4201

INSTRUCTION TO CANDIDATES

The Question Paper consists of seven (7) questions Answer any five questions.

Time: 3 hours

QUESTION ONE

A RISC machine incorporates a register file within its architecture. The file is organised as three overlapping windows W_0 , W_1 , and W_2 , each comprising 9 registers. Three registers must be made available for passing parameters, from a calling function to a called function.

- a) By means of a diagram, show how this register file must be configured as a conceptually circular scheme. Explain the role of the three regions in each window.
- b) A sequence of function calls (denoted by 'c') and function returns (denoted by 'r') now occurs as follows:

C, C, r, C, C, r, C, r, r, r

Write down in tabular form the contents of the Current Window Pointer (CWP) following each call and return. Indicate where window overflow and underflow occurs. Assume execution starts with CWP = 0. [10]

c) Why does overflow and underflow occur, and how must these events be handled?

'LIBRARY USE ONLY"

QUESTION TWO

a) (i) Briefly describe structural hazards, data hazards and control hazards in a pipelined computer. [6]

- (ii) What is meant by 'load delay slots' and 'branch delay slots'? [2]
- b) Use, the section of mock code below to illustrate how this code could be re-organized by a Re-organising Compiler to remove the inherent data and control hazards. You are being asked to
 - (i) identify the hazards and delay slots and
 - (ii) Explain how the hazards can be removed

LOAD R1, A (Load contents of address A into R1)
LOAD R2, B
MULT R1, R2, R3 (Multiply R1 by R2 and put result in R3)
ADD R3, R2,R3 (R3: =R2 + R3)
LOAD R4, C
SUB R3, R4, R2 (Subtract R3 from R4 and put result in R2)
BRNEG Q (Branch if negative to instruction at address Q)
SUB R4, R3, R1

BRNEG S STORE R1, A (Store value of R1 into address A)

[12]

QUESTION THREE

a) Define the principle of locality.

[2]

- b) What are the economic and performance implications of using cache memory between the CPU and main memory in a computer system?

 [4]
- c) define the Hit Ratio and explain how it depends on the locality of the programs being executed. [3]
- A memory cache uses a seven bit TAG to identify block frames in a direct-mapping system. If blocks are eight WORDS in size, and the BLOCK part of the address is seven bits, calculate the sizes of the main memory and cache in words.
- e) In a certain computer, the access time to the main memory is eight clock cycles, while that to the cache is tow cycles. If the average cache hit ratio is 75%, calculate the average time (in cycles) for the CPU to access a byte.

WATY USE ONLY"

QUESTION FOUR

WHOLES. 4. 5 m. 2. C Draw a block diagram of the basic architecture of a Von Neumann a)

- [5] What are the advantages and disadvantages of a microcoded instruction b) decoder, versus a hard-wired one?
- Give in details the distinction between RISC and CISC architecture. [10] c)

QUESTION FIVE

Compare and contrast parallel processing and networking. a)

- [4] Distinguish among multiprocessor systems, local area networks, wide area b) networks and interconnected WAN in terms of the following:
 - node spacing, communication, services and problems.

[16]

QUESTION SIX

- With the aid of a diagram, describe the basic architecture and operation of a) an IMMOS Transputer. [14]
- Discuss the most common applications of the Transputer. b)

[6]

QUESTION SEVEN

- a) Describe the operation of the following types of computer architecture;
 - Single Instruction Single Data (SISD)
 - Multiple Instructions Multiple Data (MIMD) (ii)

[8]

- Draw a diagram of an array processor and describe its operation. b) [12]

END OF QUESTION PAPER

GOOD LUCK!