# NATI ONAL UNI VERSI TY OF SCI ENCE AND TECHNOLOGY <br> FACULTY OF APPLI ED SCI ENCE COMPUTER SCIENCE DEPARTMENT <br> <br> AUGUST EXAMI NATI ONS 2009 

 <br> <br> AUGUST EXAMI NATI ONS 2009}

## SUBJ ECT: COMPUTER GRAPHI CS CODE: SCS4203

## INSTRUCTION TO CANDIDATES

Answer any five questions from the six questions below.
OPTIONAL ADDITIONAL MATERIALS
Graph paper
Time: 3 hours

## QUESTI ON ONE

a) Write the operational characteristics of the following display technologies:
i) Plasma displays
ii) LCD
iii) Raster refresh systems
iv) Vector refresh systems
b) A raster system has a resolution of $1280 \times 1024$ pixels. What would be frame buffer size (in bytes) if 12 bits per pixel are to be stored?
c) Describe how a dot matrix printer displays graphic objects

## QUESTION TWO

The diagram below shows a right angled triangle.

$\operatorname{Sin} 45^{\circ}=1 / \sqrt{2}$
$\operatorname{Sin} 30^{\circ}=1 / 2$
$\operatorname{Sin} 60^{\circ}=\sqrt{3} / 2$
$(0,0)$
a) Starting from the picture above, show the effect of applying the transformation below to the triangle above.

$$
\left(\begin{array}{lll}
1 & 0 & 5 \\
0 & 1 & 4 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 / \sqrt{2} & 1 / \sqrt{2} & 0 \\
-1 / \sqrt{2} & 1 / \sqrt{2} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & -5 \\
0 & 1 & -4 \\
0 & 0 & 1
\end{array}\right)
$$

Draw a diagram on a graph paper
b) Compare and contrast interlaced scanning and non-interlaced scanning
c) Give a detailed explanation of the following terms as applied to computer graphics.
i) Anti-aliasing
ii) Morphing

## QUESTION THREE

Below is a summary of Bresenham's line drawing algorithm

1. Input the two end points and store the left endpoint in (x0, and y0)
2. Load $(x 0, y 0)$ into the frame buffer; i. e. plot the first point
3. Calculate the constants $\Delta x, \Delta y, 2 \Delta y$ and $2 \Delta y-\Delta x$.
4. At each $\mathrm{x}_{\mathrm{k}}$ along the line, starting at $\mathrm{k}=0$, perform the following test:

If $p_{k}<0$, the next pint to plot is $\left(x_{k}+1, y_{k}\right)$ and $p_{k}+1=p_{k}+2 \Delta y$, otherwise the next point to plot is $\left(x_{k}+1, y_{k}+1\right)$ and $p_{k}+1=p_{k}+2 \Delta y-2 \Delta x$
5. Repeat step $4 \Delta x$ times
a) For a line with end points $(20,10)$ and $(30,18)$, calculate the pixel positions and fill the following table for $\mathrm{k}=0$ to $\mathrm{k}=4$.

| $\mathbf{k}$ | $\mathbf{p}_{\mathbf{k}}$ | $\left(\mathbf{x}_{\mathbf{k}+1}, \mathbf{y}_{\mathbf{k}+1}\right)$ |
| :---: | :---: | :---: |
| 0 |  |  |
| 1 |  |  |
| 2 |  |  |
| 3 |  |  |

[10]
b) With the aid of a diagram, explain the operation of a shadow mask cathode ray tube.

## QUESTION FOUR

a) Explain the steps of clipping a straight line using the Cohen-Sutherland line clipping algorithm. (No equations are necessary. Your explanation may be supported by a diagram)
b) Define ray tracing and give two examples of its application in computer graphics.
c) Clearly describe how you can improve the stair step appearance of displayed primitives generated by a raster algorithm.

## QUESTION FIVE

a) (i) Find the matrix that represents rotation of an object by 30 degrees about the origin.
(ii) What are the new coordinates of a point $\mathrm{P}(2,-4)$ after the rotation using the matrix in (i) above?
b) Describe the Phong and the Gourand shading technique and explain how the two techniques differ from each other.
c) Explain the difference between a color image and a grayscale image.

## QUESTION SIX

The pictures below represent two components of lighting


Fig 6a


Fig 6b
a) Name the lighting components represented and write a detailed characterisation of each of the components.
b) With the aid of pseudocode, describe the scan line polygon fill algorithm

## END OF QUESIION PAPER



