NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY FACULTY OF APPLIED SCIENCE COMPUTER SCIENCE DEPARTMENT AUGUST EXAMINATIONS 2009 SUBJECT: COMPUTER GRAPHICS CODE: SCS4203 INSTRUCTION TO CANDIDATES Answer any five questions from the six questions below. OPTIONAL ADDITIONAL MATERIALS Graph paper Time: 3 hours QUESTION ONE

a) Write the operational characteristics of the following display technologies:

	i) Plasma displays	[2]
	ii) LCD	[2]
	iii) Raster refresh systems	[2]
	iv) Vector refresh systems	[2]
b)	A raster system has a resolution of 1280 x 1024 pixels. What would (in bytes) if 12 bits per pixel are to be stored?	be frame buffer size [4]
c)	Describe how a dot matrix printer displays graphic objects	[8]

QUESTION TWO

The diagram below shows a right angled triangle.

QUESTION THREE

Below is a summary of Bresenham's line drawing algorithm

- 1. Input the two end points and store the left endpoint in (x0, and y0)
- 2. Load (x0,y0) into the frame buffer; i. e. plot the first point
- 3. Calculate the constants Δx , Δy , $2\Delta y$ and $2\Delta y$ - Δx .
- 4. At each x_k along the line, starting at k=0, perform the following test:

If $p_k < 0$, the next pint to plot is (x_k+1, y_k) and $p_k+1 = p_k+2\Delta y$, otherwise the next point to plot is (x_k+1, y_k+1) and $p_k+1=p_k+2\Delta y-2\Delta x$

- 5. Repeat step 4 Δx times
- a) For a line with end points (20,10) and (30,18), calculate the pixel positions and fill the following table for k=0 to k=4.

k	p _k	(x_{k+1}, y_{k+1})
0		
1		
2		
3		
4		

[10]

b) With the aid of a diagram, explain the operation of a shadow mask cathode ray tube.

[10]

QUESTION FOUR

a)	Explain the steps of clipping a straight line using the Cohen-Sutherland line clipping algorithm. (<i>No equations are necessary. Your explanation may be supported by a diagram</i>)	[10]
b)	Define ray tracing and give two examples of its application in computer graphics.	[4]

c) Clearly describe how you can improve the stair step appearance of displayed primitives generated by a raster algorithm. [6]

QUESTION FIVE

a)	(i) Find the matrix that represents	rotation of an object by	30 degrees about the origin.
----	-------------------------------------	--------------------------	------------------------------

- (ii) What are the new coordinates of a point P(2,-4) after the rotation using the matrix in(i) above? [4]
- b) Describe the **Phong** and the **Gourand** shading technique and explain how the two techniques differ from each other. [8]
- c) Explain the difference between a color image and a grayscale image. [2]

QUESTION SIX

The pictures below represent two components of lighting

Fig 6a

[6]

Fig 6b

a) Name the lighting components represented and write a detailed characterisation of each of the components. [10]
b) With the aid of pseudocode, describe the scan line polygon fill algorithm [10]
END OF QUESTION PAPER