NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY SCS 5102

FACULTY OF APPLIED SCIENCES

DEPARTMENT OF COMPUTER SCIENCE

SCS 5102: DISCRETE MATHEMATICS INTRODUCTION

AUGUST 2004 SUPPLEMENTARY

Time: 3 hours

Candidates should attempt ALL questions

- **A1.** (a) Let A be a set and let $\{B_i\}_{i\in\mathbb{N}}$ be a family of sets. Show that $A \bigcap_{i\in\mathbb{N}} B_i = \bigcup_{i\in\mathbb{N}} (A B_i)$ [7]
 - (b) Give the truth table for the following formula $((P \land \sim Q) \lor R) \Rightarrow ((R \lor P) \Leftrightarrow (R \lor Q))$ [6]
- A2. (a) Define an order relation. [3]
 (b) On the set \mathbb{R} of real numbers, define a relation \sim by $x \sim y \Leftrightarrow x^2 = y^2$. Determine
 - whether or not \sim is an equivalence relation. [7]
- A3. (a) Prove the following identities on the non-empty sets A,B and C(i) $(A-B)-C=A-(B\cup C)$ (ii) $(A-B)\cap C=(A\cap C)-(B\cap C)$ [5]
 - (b) Prove by induction the following Bernoulli's inequality: $(1+\alpha)^n \ge 1 + n\alpha$ for all $n \in \mathbb{N}$ and $\alpha > -1$ [7]

page 1 of 2

A4. Let M = (S, J, O, v, w) be a finite state machine where $S = \{s_0, s_1, s_2, s_3\}$; J = (a,b,c) and O = (0,1) and V and V are given in the table below

	v	w
	a b b	abc
s_0	$s_0 \ s_3 \ s_2$	0 1 1
s_1	$s_1 \ s_1 \ s_3$	001
s_2	$s_1 \ s_1 \ s_3$	110
s_3	$s_2 \ s_3 \ s_0$	101

(a) Starting at s_0 , what is the output for the input string abbccc?

[5]

(b) Draw a state diagram for this finite state machine.

[7]

- (c) In which state, if any, should we start so that the input string **abccb** produces an output **10010**? [6]
- **A5.** (a) Let G = (V,E) be an undirected graph. Define a relation \mathcal{R} on V by $a\mathcal{R}b$ if a = b or there is a path in G from a to b. Prove that \mathcal{R} is an equivalence relation. [7]

Describe the partition of V induced by \mathcal{R} . [4]

- (b) If G (V,E) is an undirected graph with |V|=v and |E|=e and no loops. Prove that $2e \le v^2-v$. State the corresponding inequality for the case when G is directed. [7,3]
- **A6.** Let G = (V,E), H = (V',E') be undirected graphs with $f: V \to V'$ establishing an isomorphism between the graphs
 - (a) Prove that $f^-: V' \to V$ is also an isomorphism for G and H. [6]
 - (b) If $a \in V$, prove that deg(a) (in G) = deg(f(a)) (in H). [7]
 - (c) Prove that vertex a is isolated (pendant) in G if and only if f(a) is isolated (pendant) in H. [8]

END OF QUESTION PAPER