NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY FACULTY OF APPLIED SCIENCE COMPUTER SCIENCE DEPARTMENT DECEMBER EXAMINATIONS 2004

SUBJECT: Discrete Mathematics

CODE: SCS 5102

INSTRUCTIONS TO CANDIDATES

The question paper consists of seven (6) questions
Answer any 4 questions

QUESTION ONE

a) Define the following Terms:

i) Theorem

[2]

ii) Deduction

[2]

b) Using a the predicate logic prove the theorem:

$$(\forall x)[P(x) \land Q(x)] \to (\forall x)P(x) \land (\forall x)Q(x)$$
 [8]

c) Use mathematical induction to prove that the statement is true for every positive integer n.

$$1^{2} - 2^{2} + 3^{2} - 4^{2} + \dots + (-1)^{n+1} n^{2} = \frac{(-1)^{n+1} n(n+1)}{2}$$
 [7]

d) Let X and Y be positive numbers, and prove that X < Y if and only if $X^2 < Y^2$.

[6]

QUESTION TWO

a)	Consider the set $A = \{1, 2, 3, 4, 6, 9\}$. Define a relation R on A by writing	
	$(x, y) \in R$ if and only if $x - y$ is a multiple of 3.	
	i. Describe R as a subset of $A \times A$.	[3]
	ii. Show that R is an equivalence relation on A .	[6]
	iii. What are the equivalence classes of R?	[6]
b)	Solve the recurrence relation subject to the basis step by using the expand	
	guess, and verify approach.	·
	F (n)=1	
	F (n)=nF (n -1)	[10]
QUI	ESTION THREE	
a)	For each of the following sentences, write down the sentence in logical	
	notation, negate the sentence, and say whether the sentence or its negation is	
	true:	
	i. Given any integer, there is a larger integer.	[2]
	ii. There is an integer greater than all other integers.	[2]
	iii. Every even number is a sum of two odd numbers.	[2]
	iv. Every odd number is a sum of two even numbers.	[2]
	v. The distance between any two complex numbers is positive.	[2]
b)	Let A be a finite set with 7 elements, and let L be a finite language on A with 9	
	elements such that $\lambda \in L$.	

i) How many elements does A^3 have? [4]

ii) Explain why L^2 has at most 73 elements. [4]

c) Show that if $a \in \mathbb{N}$ and $b \in \mathbb{Z}$. Then there exist unique q, $r \in \mathbb{Z}$ such that $b = aq + r \text{ and } 0 \le r < a.$

7

QUESTION FOUR

a) It is well known that every multiple of 2 must end with the digit 0, 2, 4,6 or 8, and that every multiple of 5 must end with the digit 0 or 5.

Prove the equally well-known rule that a natural number is a multiple of 3 if and only if the sum of the digits is a multiple of 3 by taking the following steps.

Consider a k-digit natural number \mathcal{X} , expressed as a string $x_1x_2....x_k$, where the digits $x_1x_2....x_k \in \{0, 1, 2, ..., 9\}$.

- i) Calculate the value of X in terms of the digits $x_1 x_2 \dots x_k$ [4]
- ii) Calculate the difference between X and the sum of the digits. [4]
- iii) Show that this difference is divisible by 3. [5]
- iv) Complete the proof. [4]
- b) Let x, y, m, n, a, b, c, $d \in \mathbb{Z}$ satisfy m = ax + by and n = cx + dy with ad bc $= \pm 1$. Prove that (m, n) = (x, y). [8]

QUESTION FIVE

a) Let $A = \{a, b, c, d\}$ $B = \{a, b, e, g, h\}$ $C = \{b, d, e, g, h, m, n\}$

Verify:

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cup B| - |B \cap C| - |A \cap C| + |A \cap B \cap C|$$
 [10]

b) Justify each of the steps in the following proof sequence of:

$$(P \to Q) \land [P \to (Q \to R)] \to (P \to R)$$

- i) $P \rightarrow Q$
- ii) $P \rightarrow (Q \rightarrow R)$
- iii) $[P \to (Q \to R)] \to [(P \to Q) \to (P \to R)]$
- $\mathsf{iV}\big) \qquad (P \to Q) \to (P \to R)$
- $V) P \to R [15]$

QUESTION FOUR

a) It is well known that every multiple of 2 must end with the digit 0, 2, 4,6 or 8, and that every multiple of 5 must end with the digit 0 or 5.

Prove the equally well-known rule that a natural number is a multiple of 3 if and only if the sum of the digits is a multiple of 3 by taking the following steps.

Consider a k-digit natural number \mathcal{X} , expressed as a string $x_1x_2....x_k$, where the digits $x_1x_2....x_k \in \{0, 1, 2, \ldots, 9\}$.

i) Calculate the value of
$$\mathcal{X}$$
 in terms of the digits $x_1 x_2 \dots x_k$ [4]

ii) Calculate the difference between
$$X$$
 and the sum of the digits. [4]

b) Let x, y, m, n, a, b, c, $d \in \mathbb{Z}$ satisfy m = ax + by and n = cx + dy with ad - bc = ± 1 . Prove that (m, n) = (x, y).

QUESTION FIVE

a) Let $A = \{a, b, c, d\}$ $B = \{a, b, e, g, h\}$ $C = \{b, d, e, g, h, m, n\}$

Verify:

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cup B| - |B \cap C| - |A \cap C| + |A \cap B \cap C|$$
 [10]

b) Justify each of the steps in the following proof sequence of:

$$(P \to Q) \land [P \to (Q \to R)] \to (P \to R)$$

- i) $P \rightarrow Q$
- ii) $P \rightarrow (Q \rightarrow R)$
- iii) $[P \rightarrow (Q \rightarrow R)] \rightarrow [(P \rightarrow Q) \rightarrow (P \rightarrow R)]$
- iv) $(P \rightarrow Q) \rightarrow (P \rightarrow R)$
- $V) P \to R [15]$

QUESTION SIX

- a) Suppose that $T = O = \{0, 1, 2, 3, 4, 5\}.$
 - i) Design a Finite state machine, which inserts the digit 0 at the beginning of any string beginning with 0,2 or 4, and which inserts the digit 1 at the beginning of any string beginning with 1,3 or 5. Describe your result in the form of a transition table.
 - ii) Design a finite state machine, which replaces the first digit of any input string beginning with 0,2 or 4 by the digit 3. Describe your result in the form of a transition table. [8]
- b) Describe the following search Algorithms. Exemplify where possible.

i) Depth-First Search [3]ii) Breadth-First Search [3]iii) Shortest Path Problem [3]

END OF QUESTION PAPER
GOOD LUCK!