NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY FACULTY OF APPLIED SCIENCE

COMPUTER SCIENCE DEPARTMENT JULY SUPPLEMENTARTY EXAMINATIONS 2005

SUBJECT: DISCRETE MATHEMATICS

CODE: SCS5102

INSTRUCTION TO CANDIDATES

Answer any four questions. Paper contains five questions.

Time: 3 hours

QUESTION ONE

- a) Define a relation R on $N \times N$ by (a, b) R(c, d) if and only if a + b = c + d. Prove that R is an equivalence relation on $N \times N$. [10]
- b) Let S denote the set of equivalence classes of R. Show that there is a one-to-one and onto function from S to N. [8]
- c) Use mathematical induction to prove that the statement is true for every positive integer n.

$$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

[7]

QUESTION TWO

- a) Prove the following assertions:
 - i) The sentence $(\overline{P \leftrightarrow q}) \leftrightarrow ((p \lor q) \land (\overline{p \land q}))$ is a tautology.[7]
 - ii) Without using the truth tables show that:

$$(p \lor (q \land r)) \leftrightarrow ((p \lor q) \land (p \lor r))$$
[8]

b) Solve the recurrence relation subject to the basis step by using the expand guess, and verify approach.

$$F(n)=1$$

$$F(n)=nF(n-1)$$

[10]

QUESTION THREE

- a) For each of the following sentences, write down the sentence in logical notation, negate the sentence, and say whether the sentence or its negation is true:
 - i. There is no greatest natural number
 - ii. Every integer is a sum of the squares of two integers [2]
 - iii. Every even number is a sum of two odd numbers. [2]
 - iv. Every odd number is a sum of two even numbers. [2]
 - v. Given an integer there is a lager integer [2]
- b) Suppose that $I = O = \{0,1\}$
 - Design a finite state machine that will recognize the pattern 10010.
 - ii) Design a finite state machine that will recognize the pattern 10010, but only when the last 0 in the sequence pattern occurs at a position that is a multiple of 5.

QUESTION FOUR

- 2. Using the analogues in logic demonstrate the following deductions in sets:
 - i) $P \cup (Q \cap R = ((P \cup Q) \cap (P \cup R))$

[9]

ii) $P \cap (Q \cup R = ((P \cap Q) \cup (P \cap R))$

[9]

iii) $P \cup Q = \overline{P} \cap \overline{Q}$

[7]

QUESTION FIVE

a) Let

$$A = \{a, b, c, d, n, p\}$$

$$B = \{a, b, e, g, h\}$$

$$C = \{b, d, e, g, h, m, n\}$$

Verify:

$$\left|A \cup B \cup C\right| = \left|A\right| + \left|B\right| + \left|C\right| - \left|A \cup B\right| - \left|B \cap C\right| - \left|A \cap C\right| + \left|A \cap B \cap C\right|$$

[10]

- a) Describe the following search Algorithms. Exemplify where possible.
 - i) Depth-First Search

[5]

ii) Breadth-First Search

[5]

iii) Shortest Path Problem

[5]

END OF QUESTION PAPER