NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY FACULTY OF APPLIED SCIENCES

SUBJECT: DISCRETE MATHEMATICS

CODE: SCS5102
INSTRUCTION TO CANDIDATES
This paper consists of five questions. Answer any FOUR questions.
Each question carries 25 marks
Time: 3 hours

Question One

a) Given that $\mathrm{M}=\{\mathrm{a}: \mathrm{a} \in \mathrm{Z}$ and $1<\mathrm{a}<6\}$ and $\mathrm{T}=\{\mathrm{a}: \mathrm{a} \in \mathrm{Z}$ and $1<\mathrm{a}<3\}$ where Z is a set of integers with a representing some elements of Z.
List the elements of:
i) MUT
ii) $T \cap M$
iii) MxT
b) Let set $A=\left\{x: x \in R: x^{2}+8 x \leq-15\right\}$ and set $B=\{x: x \in R\}$, where R is a set of Real Numbers and x represents some elements of set R. Prove that $A \subset B$.
c) Using set identities and De Morgan's laws prove that:
$(\mathrm{P} \cup \mathrm{Q})^{\prime} \cap(\mathrm{P} \cap \mathrm{Q})^{\prime}=(\mathrm{P} \cup \mathrm{Q})$
d)
e) Define an equivalence relation on Z given that x is equivalent to y if $x-y$ is divisible by 7 .
f) Use mathematical induction to prove that the statement is true for every positive

$$
\begin{equation*}
\text { integer } n .1+3+5+\ldots+(2 n-1)=n^{2} \tag{5}
\end{equation*}
$$

Question Two

Below are two graphs, G1 has vertices labelled as a1, a2, a3, a4 and G2 has vertices labelled as $\mathrm{g} 1, \mathrm{~g} 2, \mathrm{~g} 3$ and g 4 .

Figure 1: G1

Figure 2 : G2
a) Determine the relationship between G1 and G2 in terms of their valencies. [4]
b) Construct the isomorphism for G1 and G2.
c) Construct the adjacent matrices for G1 and G2.
d) Permute the rows and columns for the adjacent matrices of G1 and G2.
e) Comment on the relationship between G1 and G2.

Question Three

a) Investigate whether the following are Tautologies or not:
i) $\overline{(p \vee q)} \leftrightarrow(\bar{p} \wedge \bar{q})$.
ii) $\quad(p \wedge(q \vee r)) \leftrightarrow((p \wedge q) \vee(p \wedge r))$
b) Prove the following deductions in sets:
$A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$
b) i) Given that $f(x)=x^{2}$. Show that $f(x)$ is not injective under real numbers.
ii) Given that $f(x)=x^{2}-3$ and $g(x)=x+1$. Find $g(f(x))$.

Question four

a) Explain the following as applied to graph theory:
i) Euler circuit
ii) Euler trail
iii) Euler path [2]
iv) Hamiltonian cycle
b) Figure 3 below is a graph G3 whose vertices are labeled as a, b, c, d and e

Figure 3: G3
Analyse the graph in terms of :
i) Euler circuit [4]
ii) Euler trail [4]
iii) Euler path [4]
iv) Hamiltonian cycle [5]

Question five

a) What do you understand by:
i) Strong mathematical induction
ii) Weak mathematical induction
b) Prove by induction for $\mathrm{n} \geq 1$ that:
$1 \times 1!+2 \times 2!+3 \times 3!+. .+n \times n!=(n+1)!-1$
c) Using Euclidean Algorithm, find the greatest common divisor of $(210,858)$.
d) Suppose that $\mathrm{T}=\mathrm{O}=\{0,1,2,3,4,5\}$.

Design a finite state machine which replaces the first digit of any input string beginning with 0,2 or 4 by the digit 3 . Describe your result in the form of a transition table.

