NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY FACULTY OF APPLIED SCIENCES COMPUTER SCIENCE DEPARTMENT JANUARY EXAMINATIONS 2013

SUBJECT: DISCRETE MATHEMATICS CODE: SCS5102 INSTRUCTION TO CANDIDATES

This paper consists of five questions. Answer any FOUR questions. Each question carries 25 marks

Time: 3 hours

Question One

a) Given that M = {a: a ∈Z and 1 < a <6} and T = {a: a∈ Z and 1 <a<3} where Z is a set of integers with a representing some elements of Z. List the elements of:

i)	M∪T	[3]
ii)	$T \cap M$	[1]
iii)	MxT	[1]

- b) Let set A={x: $x \in R$: $x^2 + 8x \le -15$ } and set B = {x: $x \in R$ }, where R is a set of Real Numbers and x represents some elements of set R. Prove that A \subset B. [4]
- c) Using set identities and De Morgan's laws prove that:
 (P∪ Q) ∩ (P∩Q) = (P∪ Q)
 [6]
- e) Define an equivalence relation on Z given that x is equivalent to y if x y is divisible by 7.
- f) Use mathematical induction to prove that the statement is true for every positive integer n. $1 + 3 + 5 + ... + (2n 1) = n^2$ [5]

Question Two

Below are two graphs, G1 has vertices labelled as a1, a2, a3, a4 and G2 has vertices labelled as g1, g2, g3 and g4.

Figure 1: G1

Figure 2 : G2

a) Determine the relationship between G1 and G2 in terms of their valencies. [4]
b) Construct the isomorphism for G1 and G2. [6]
c) Construct the adjacent matrices for G1 and G2. [4]
d) Permute the rows and columns for the adjacent matrices of G1 and G2. [6]
e) Comment on the relationship between G1 and G2. [5]

Question Three

a) Investigate whether the following are Tautologies or not:

i)
$$(p \lor q) \leftrightarrow (\overline{p} \land \overline{q}).$$
 [6]

ii)
$$(p \land (q \lor r)) \leftrightarrow ((p \land q) \lor (p \land r))$$
 [7]

[2]

- b) Prove the following deductions in sets: $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ [8]
- b) i) Given that $f(x) = x^2$. Show that f(x) is not injective under real numbers.

ii) Given that
$$f(x) = x^2 - 3$$
 and $g(x) = x + 1$. Find $g(f(x))$. [2]

Question four

a)	Explain the following as applied to graph theory:	
	i) Euler circuit	[2]
	ii) Euler trail	[2]

- iii) Euler path[2]iv) Hamiltonian cycle[2]
- b) Figure 3 below is a graph G3 whose vertices are labeled as a, b, c, d and e

Analyse the graph in terms of :

i)	Euler circuit	[4]
ii)	Euler trail	[4]
iii)	Euler path	[4]
iv)	Hamiltonian cycle	[5]

Question five

a)	What do you understand by:	
	i) Strong mathematical induction	[2]
	ii) Weak mathematical induction	[2]
b)	Prove by induction for $n \ge 1$ that:	
	1x1! + 2x2! + 3x3! + + nxn! = (n+1)! - 1	[7]
c)	Using Euclidean Algorithm, find the greatest common divisor of (210,858).
		[4]
4)	Sumpose that $T_0 = \{0, 1, 2, 2, 4, 5\}$	

d) Suppose that T=O={0,1,2,3,4,5}. Design a finite state machine which replaces the first digit of any input string beginning with 0, 2 or 4 by the digit 3. Describe your result in the form of a transition table. [10]