NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY
 B.COMM (ACTUARIAL SCIENCE) HONOURS DEGREE

ACTUARIAL STATISTICS I - CIN 2111

NOVEMBER/DECEMBER 2005 FIRST SEMESTER EXAMINATION

DURATION: 3 HOURS

Instructions To Candidates

1. Attempt ALL 13 questions, beginning each question on a new sheet.
2. For this question paper you are permitted to have an electronic calculator (non programmable) and actuarial tables
3. You must not start writing your answers until instructed to do so by the invigilator
4. Mark allocations are shown in brackets
5. Write clearly and show all workings
6. If the probability is 0,40 that a child exposed to a certain contagious disease will catch it, what is the probability that the tenth child exposed to the disease will be the third to catch it?
7. Consider three events A, B, and C which are such that A and B are mutually exclusive, A and C are independent, B and C are independent, $P(A)=0,3 ; P(B)=0,6$ and $P(C)=0,5$
(a) Find the probability of the events (i) $A \cup(B \cap C)$ and (ii) $(A \cup B) \cap C$.
[2; 2 marks]
(b) State with a reason whether or not events A, B and C are independent.
[2 marks]
[Total: 6 marks]
8. Show that the Variance of a discrete random variable X is given by:
$\operatorname{Var}(\mathrm{X})=\mathrm{G}^{\prime \prime}(1)+G^{\curlywedge}(1)-\left[G^{`}(1)\right]^{2}$
Where $G(t)$ denotes the probability generating function of X. [4 marks]
9. A continuous random variable Y has PDF:

$$
f(y)=\left\{\begin{array}{cl}
y(y-1)(y-2) & 0 \leq \mathrm{y} \leq 2 \\
\mathrm{C} & 2<\mathrm{Y} \leq 4 \\
\mathrm{O} & \text { otherwise }
\end{array}\right.
$$

Where C is a constant
(a) Determine the value of C.
(b) Find $E[Y]$

[2 marks]

[3 marks]
[Total: 5 marks]
5. A random variable X that can take values in the range $X>R$, where R is a positive constant, has probability density function $K e^{-2 x}$, where K is a constant. Derive a formula for the moment generating function of X, stating the values of t for which your formula is valid, and determine the value of the constant K.
[5 marks]
6. A fair coin is tossed repeatedly until 20 heads have been obtained. Calculate approximately the probability that this will require more than 50 tosses.
[6 marks]
7. Bag A contains two tickets, numbered 1 and 2. Bag B contains four tickets, numbered 1, 2, 3 and 4 . One ticket is drawn out of each bag at random (and independently). Let X denote the sum of the two numbers on the tickets drawn, and let Y denote the larger of the two numbers (the single number observed if they are equal).

Find the correlation coefficient between X and Y.
[9 marks]
8. (a) State the central limit theorem.

[4 marks]

(c) It is assured that the claims arriving at an insurance company per working day has a mean of 40 and a standard deviation of 12. A survey was conducted over 50 working days. Find the probability that the sample mean number of claims arriving per working day was less than 35.
[4 marks]
[Total: 8 marks]
9. If the probability density function of X is given by:

$$
f(x)=\left\{\begin{array}{cl}
2(1-x) & \text { for } 0<x<1 \\
0 & \text { elsewhere }
\end{array}\right.
$$

(a) Show that $E\left[X^{r}\right]=\frac{2}{(r+1)(r+2)}$
[4 marks]
(b) Use this result to evaluate,

$$
E\left[(2 X+1)^{2}\right\rfloor
$$

[3 marks]
[Total: 7 marks]
10. (a) The size of a claim, X, which arises under a certain type of insurance contract, is to be modeled using a gamma random variable with parameters α and θ (both >0) such that the moment generating function of X is given by:

$$
M(t)=(1-\theta t)^{-\alpha}, \quad t<1 / \theta
$$

By using the cumulant generating function of X or otherwise, show that the coefficient of skewness of the distribution of X is given by $2 / \sqrt{a}$.
[5 marks]
(b) Show that the moment generating function of the Poisson distribution is given by:

$$
M_{x}(t)=e^{\lambda\left(e^{t}-1\right)}
$$

[4 marks]
(c) Hence, or otherwise , show that: Mean $=$ Variance $=\lambda \quad$ [4 marks]
[Total: 13 marks]
11. The joint probability density function of the random variables
X and Y is given by:

$$
f\left(x, y=X^{2}+\frac{X Y}{3}\right), 0<\mathrm{x}<1,0<\mathrm{y}<2
$$

Find the following:
(a) $F(x, y)$

[5 marks]

(b) $\quad P(X+Y<1)$ [4 marks]
(c) $\quad f_{x}(x)$
(d) $\quad f_{y}(y)$ [3 marks]
(e) $F_{x}(x)$ [3 marks]
(f) $\quad F_{y}(y)$
(g) Obtain the correlation coefficient between X and $Y, \operatorname{Corr}(\mathrm{X}, \mathrm{Y})$
[5 marks]
[Total: 24 marks]
12. A random variable X has a density function

$$
f(x)= \begin{cases}c e^{-3 x} & x>0 \\ 0 & x \leq 0\end{cases}
$$

Find the following
(a) The value of constant C
(b) $\quad P(1<x<2)$
[3 marks]
[Total: 6 marks]
13. A random sample of fifty claim amounts (\$) arising in a particular section of an insurance company's business are displayed below in a stern and leaf plot:

15	14678
16	0233368889
17	0000001233457888
18	3456779
19	0257
20	0
21	3
22	07
23	
24	
25	3
26	
27	3
28	8
29	
30	
31	2

Stern unit $=100$
Leaf unit $=10$
The sum of the fifty amounts (before rounding) is $\$ 92780$.
Calculate the Mean and Median claim amounts.

END OF EXAMINATION

