NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY FACULTY OF COMMERCE
 DEPARTMENT OF INSURANCE AND ACTUARIAL SCIENCE
 B.COMM (HONOURS) DEGREE IN ACTUARIAL SCIENCE
 CIN 2111 - ACTUARIAL STATISTICS I/PROBABILITY THEORY
 AUGUST 2011 SUPPLEMENTARY EXAMINATIONS

DURATION: 3 HOURS

Instructions to Candidates

1. Attempt all 13 Questions
2. To Obtain Full Marks Show ALL appropriate steps to your answers

Requirements

1. Actuarial Tables (2002) Edition
2. Non-programmable Scientific calculator

Q1. Calculate three commonly used statistics that provide a measure of spread, and expressed in terms of the original unit of measure, for the following set of ten observations:
$5.1,2.6,7.3,4.4,4.6,2.9,3.4,3.2,4.4,5.0$
[Total 6marks]
Q2. A bag contains 8 black and 6 white balls. Two balls are drawn out at random, one after the other and without replacement. Calculate the probabilities that:
(i) The second ball drawn out is black.
(ii) The first ball drawn out was white, given that the second ball drawn out is black.
[Total 3 marks]

Q3. (a) Show that, if the random variable X has a $\operatorname{Gamma}(\alpha, \lambda)$ distribution, then X / k, where k is a positive constant, has a $\operatorname{Gamma}(\alpha, \mathrm{k} \lambda)$ distribution. [4 marks]
(b) If the random variable T representing the total lifetime of an individual light bulb has an $\operatorname{Exp}(\lambda)$ distribution, where $1 / \lambda=2,000$ hours, find the probability that the average lifetime of 10 bulbs will exceed 4,000 hours.
[6 marks]
[Total 10 marks]

Q4. Two integer random variables, X and Y, have the following joint probability function:

	Y					
		0	1	2	3	
Y	1	0.05	0.20	0.15	0.05	
	2	0.20	0.15	0.12	0.08	

Calculate
(i) $\mathrm{E}(\mathrm{X})$
(ii) $\mathrm{E}(\mathrm{XI} \mathrm{Y}=3)$
(iii) $\operatorname{Var}(\mathrm{Y} \mid \mathrm{X}=2)$

Q5. Show from first principles that the variance of the second formulation of the geometric distribution (where x is the number of failures before the first success) with parameter θ is $\frac{1-\theta}{\theta^{2}}$.
Hint: consider E[X(X+1)]
[Total 10 marks]

Q6. A charity issues a large number of certificates each costing $\$ 10$ and each being repayable one year after issue. Of these certificates, 1% are randomly selected to receive a prize of $\$ 10$ such that they are repaid as $\$ 20$. The remaining 99% are repaid at their face value of $\$ 10$.
(i) State the Central limit Theorem
(ii)Show that the mean and standard deviation of the sum repaid for a single purchased certificate are $\$ 10.1$ and $\$ 0.995$ respectively.

Consider a person who purchases 200 of these certificates.
(iii) Calculate approximately the probability that this person is repaid more than $\$ 2,040$ by using the Central Limit Theorem applied to the total sum repaid. [3]
(iv) An alternative approach to approximating the probability in (ii) above is based on the number of prize certificates the person is found to hold. This number will follow a binomial distribution.

Use a Poisson approximation to this binomial distribution to approximate the probability that this person is repaid more than $£ 2,040$.
(v) Comment briefly on the comparison of the two approximations above given that the exact probability using the binomial distribution is 0.0517 .

Q7. A continuous random variable Y has PDF:
where c is a constant.
Determine the value of c and find $\mathrm{E}[\mathrm{Y}]$.
[Total 5 Marks]
Q8. Show that the variance of a discrete random variable X is given by:

$$
\operatorname{Var}(\mathrm{X})=G^{\prime \prime}(1)+G^{\prime}(1)-\left[G^{\prime}(1)\right]^{2}
$$

Where $\mathrm{G}(\mathrm{t})$ denotes the probability generating function of X.[Total 6 Marks]
Q9. Let (X, Y, Z) be a trivariate random variable with joint pdf
$f_{X Y Z}(x, y, z)= \begin{cases}k e^{-(a x+b y+c z)} & x>0, y>0, z>0 \\ 0 & \text { otherwise }\end{cases}$
Where $a, b, c>0$ and k are constants
(a) Determine the value of k
(b) Find the marginal joint pdf of X and Y, i.e. $f_{X Y}(x, y)$
(c) Find the marginal pdf of X.
(d) Are X, Y and Z independent.
(e) Show that $f_{X Y Z}(x, y, z)=f_{Z \mid X, Y}(z \mid x, y) f_{Y \mid X}(y \mid x) f_{X}(x)$

Q10. An actuary has been advised to use the following positively-skewed claim size distribution as a model for RTA cover claim, with claim sizes measured in units of $\$ 100$,
$f(x, \theta)=\frac{x^{2}}{2 \theta^{3}} \exp \left(-\frac{x}{\theta}\right): \quad 0<x<\infty, \theta>0$
(i) Find the Moments first three non-central moments for the given distribution [6]
(ii)Determine by integration the variance of this distribution and calculate the coefficient of skewness.

Q11. Use the cumulant generating functions to find the mean, variance and skewness of the Poisson distribution with parameter μ.
[Total 3 Marks]

Q12. Let (X, Y) be a bivariate r.v. with the joint pdf:
$f_{X Y}(x, y)=\frac{x^{2}+y^{2}}{4 \pi} e^{-\left(x^{2}+y^{2}\right) / 2} \quad-\infty<x<\infty,-\infty<y<\infty$
Show that X and Y are not independent but are uncorrelated.
[Total 5 Marks]
Q13. Consider the following three probability statements concerning an F variable with 6 and 12 degrees of freedom. State, with reasons, whether each of these statements is true:
(a) $\mathrm{P}\left(\mathrm{F}_{6,12}>0.250\right)=0.95$
(b) $\mathrm{P}\left(\mathrm{F}_{6,12}<4.821\right)=0.99$
(c) $\mathrm{P}\left(\mathrm{F}_{6,12}<0.130\right)=0.01$
[1]
[1]
[1]
[Total 3 Marks]

