NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY FACULTY OF COMMERCE

DEPARTMENT OF INSURANCE AND ACTUARIAL SCIENCE

B.COMM (HONOURS) DEGREE IN ACTUARIAL SCIENCE

CIN 2111 - ACTUARIAL STATISTICS I/PROBABILITY THEORY

AUGUST 2011 SUPPLEMENTARY EXAMINATIONS

DURATION: 3 HOURS

Instructions to Candidates

- 1. Attempt all 13 Questions
- 2. To Obtain Full Marks Show ALL appropriate steps to your answers

Requirements

- 1. Actuarial Tables (2002) Edition
- 2. Non-programmable Scientific calculator
- **Q1.** Calculate three commonly used statistics that provide a measure of spread, and expressed in terms of the original unit of measure, for the following set of ten observations:

5.1, 2.6, 7.3, 4.4, 4.6, 2.9, 3.4, 3.2, 4.4, 5.0 [Total 6marks]

Q2. A bag contains 8 black and 6 white balls. Two balls are drawn out at random, one after the other and without replacement. Calculate the probabilities that:

(i) The second ball drawn out is black. [1]
(ii) The first ball drawn out was white, given that the second ball drawn out is black. [2]

[Total 3 marks]

Q3. (a) Show that, if the random variable X has a Gamma(α , λ) distribution, then X/k, where k is a positive constant, has a Gamma(α , $k\lambda$) distribution. [4 marks]

(b) If the random variable T representing the total lifetime of an individual light bulb has an $\text{Exp}(\lambda)$ distribution, where $1/\lambda = 2,000$ hours, find the probability that the average lifetime of 10 bulbs will exceed 4,000 hours. [6 marks] [Total 10 marks]

Q4.	Two integer random variables, X and Y, have the following joint probability
	function:

		Y			
		0	1	2	3
v	1	0.05	0.20	0.15	0.05
1	2	0.20	0.15	0.12	0.08

Calculate

i)	E(X)	[1]
ii)	E(X Y=3)	[2]
iii)	Var(Y¦X=2)	[3]
		[Total 6 marks]

Q5. Show from first principles that the variance of the second formulation of the geometric distribution (where x is the number of failures before the first success) with parameter θ is $\frac{1-\theta}{\theta^2}$.

Hint: consider E[X(X+1)]

[Total 10 marks]

Q6. A charity issues a large number of certificates each costing \$10 and each being repayable one year after issue. Of these certificates, 1% are randomly selected to receive a prize of \$10 such that they are repaid as \$20. The remaining 99% are repaid at their face value of \$10.

(i) State the Central limit Theorem [4]
(ii)Show that the mean and standard deviation of the sum repaid for a single purchased certificate are \$10.1 and \$0.995 respectively. [2]

Consider a person who purchases 200 of these certificates.

(iii) Calculate approximately the probability that this person is repaid more than \$2,040 by using the Central Limit Theorem applied to the total sum repaid. [3]

(iv) An alternative approach to approximating the probability in (ii) above is based on the number of prize certificates the person is found to hold. This number will follow a binomial distribution.

Use a Poisson approximation to this binomial distribution to approximate the probability that this person is repaid more than $\pounds 2,040$. [3]

(v) Comment briefly on the comparison of the two approximations above given that the exact probability using the binomial distribution is 0.0517. [1] [Total 13 Marks]

Q7. A continuous random variable Y has PDF:

 $f(y) = \{y(y-1)(y-2) | 0 \le y \le 2 \\ \{ c \ 2 < y \le 4 \\ \{ 0 \ otherwise \} \}$

where c is a constant.

Determine the value of c and find E[Y].

[Total 5 Marks]

Q8. Show that the variance of a discrete random variable X is given by:

Var (X) = $G''(1) + G'(1) - [G'(1)]^2$

Where G(t) denotes the probability generating function of X.[Total 6 Marks]

Q9. Let (X, Y, Z) be a trivariate random variable with joint pdf

$$f_{XYZ}(x, y, z) = \begin{cases} ke^{-(ax+by+cz)} & x>0, y>0, z>0\\ 0 & \text{otherwise} \end{cases}$$

Where $a, b, c > 0$ and k are constants

(a) Determine the value of k	[4]
(b) Find the marginal joint pdf of X and Y, i.e. $f_{XY}(x, y)$	[4]
(c) Find the marginal pdf of <i>X</i> .	[4]
(d) Are X, Y and Z independent.	[4]

(e) Show that
$$f_{XYZ}(x, y, z) = f_{Z|X,Y}(z|x, y)f_{Y|X}(y|x)f_X(x)$$
 [4]

[Total 20 Marks]

Q10. An actuary has been advised to use the following positively-skewed claim size distribution as a model for RTA cover claim, with claim sizes measured in units of \$100,

$$f(x,\theta) = \frac{x^2}{2\theta^3} \exp\left(-\frac{x}{\theta}\right): \quad 0 < x < \infty, \ \theta > 0$$

(i) Find the Moments first three non-central moments for the given distribution [6](ii)Determine by integration the variance of this distribution and calculate the coefficient of skewness. [4]

[Total 10 Marks]

Q11. Use the cumulant generating functions to find the mean, variance and skewness of the Poisson distribution with parameter μ . [Total 3 Marks]

Q12. Let (X, Y) be a bivariate r.v. with the joint pdf:

$$f_{XY}(x, y) = \frac{x^2 + y^2}{4\pi} e^{-(x^2 + y^2)/2} \quad -\infty < x < \infty, \ -\infty < y < \infty$$

Show that *X* and *Y* are not independent but are uncorrelated.

[Total 5 Marks]

Q13. Consider the following three probability statements concerning an F variable with
6 and 12 degrees of freedom. State, with reasons, whether each of these
statements is true:(a) $P(F_{6,12} > 0.250) = 0.95$ [1](b) $P(F_{6,12} < 4.821) = 0.99$ [1](c) $P(F_{6,12} < 0.130) = 0.01$ [1][Total 3 Marks]

####