NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

B.COMM (HONOURS) DEGREE IN ACTUARIAL SCIENCE

ACTUARIAL STATISTICS III - CIN 2211

APRIL/MAY 2003 SECOND SEMESTER EXAMINATION

INSTRUCTIONS TO CANDIDATES

1. Attempt all 11 questions, beginning your answer to each question on a separate sheet.
2. March allocations are shown in brackets

Additional Examination Material

Non-programmable electronic calculator
Tables of Actuarial Examinations (Actuarial Tables)

Question 1

(a) Given a measurable space (θ, F), what is a probability measure defined on this space?
(b) Let (θ, F) be a measurable space and let $\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots, \mathrm{P}_{\mathrm{n}}$ be a collection of probability measures defined on F . If $\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{\mathrm{n}}$ is a collection of nonnegative real numbers such that $\sum_{i=1}^{n} a_{i}=1$, , prove that functions P^{*} defined on F by $P^{*}(E)=\sum_{i=1}^{n} a_{i} P_{i}(F)$ is a probability measure on F . [3 marks]
(c) Let (θ, F) be a measurable space and let $\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots$ be a sequence of probability measures defined on F. Prove that the function P^{*} defined on F by

$$
P^{*}(E)=\sum_{n=1}^{\infty} \frac{1}{2^{n}} P_{\mathrm{n}}(\mathrm{E})
$$

is a probability measure on F .
(d) Let $\left\{\mathrm{K}_{\mathrm{i}}\right\}_{1} \mathbf{P}_{\mathrm{I}}$ be a family of © - algebras on θ, Prove that

$$
\bigcap_{i \in I} K_{i}
$$

is again a (9-algebra

Question 2

(a) (i) Define a linear congruential generator (LCG) explaining clearly how actual pseudo-random numbers are generated.
(ii) With the following choice of constants to be used in (i) above, generate 5 pseudo-random numbers from the $\mathrm{U}(0,1)$ distribution: $\mathrm{a}=13 \mathrm{c}=39 \mathrm{~m}=100 \mathrm{X}_{0}=87$ (seed).
(b) (i) State any two methods that may be used in general to generate random variates from a specified distribution.
[2 marks]
(ii) Explain in detail how you would simulate a variate from the Pareto distribution with parameters $\alpha, \lambda(\alpha>0, \lambda>0)$ using the inverse transform method. [3 marks]
(iii) What are the disadvantages of the inverse transform method in general?
[1mark]
(c) Choose one of the following options and give a full explanation with or without any mathematical expressions.
(i) Explain in detail how you would simulate the share price process with both positive or negative jumps over a time period and state a possible application for this simulation.
(ii) Explain in detail how you would simulate the cumulative claims process of an insurance company over a time period and state a possible application for this simulation.
[Total 15 marks]

Question 3

(a) Define a stopping time and give two examples of stopping times.
[2 marks]
(b) In a coin tossing game, youeither win or lose \$1dependingon the outcome of the toss. If you start the game with $\$ 30$ in your pocket and decide to play until you have $\$ 50$ or $\$ 10$ and X_{n} is the amount you have at step n, then the time you stop the fame is defined by

$$
\tau=\min \left\{\mathrm{n}: \mathrm{X}_{\mathrm{n}}=10 \text { or } 50\right\}
$$

Prove that τ is a stopping time w.r.t the filtration

$$
\mathrm{F}_{\mathrm{n}}=\sigma\left\{\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}\right\}
$$

(c) $\operatorname{Let} \mathrm{U}=[\mathrm{a}, \mathrm{b}] \mathrm{a}<\mathrm{b}, \mathrm{a}, \mathrm{b} \in \mathrm{R}$

Let X_{t} be a Brownian motion with $\mathrm{X}_{0}=\mathrm{c}$ and $\mathrm{a}<\mathrm{c}<\mathrm{b}$
Define the filtration $\mathrm{M}_{\mathrm{t}}=\sigma\left\{\mathrm{X}_{\mathrm{s}}: 0\right.$ [$\mathrm{s}[\mathrm{t}\}$ and a time

$$
\tau=\inf \{t>0 ; X t \notin U\}
$$

Prove that τ is a stopping time w.r.t the filtration Mt [3 marks]
(d) Given a discount rate $\boldsymbol{9}$ and a well behaved price process Xt and American call on Xt , with strike price K and expiring at time T from now. Give an expression of the price of the call price at time zero as an optimal stopping problem. [2 marks]
[Total 10 marks]

Question 4.

(a) (i) Let B_{t} be a Brownian motion with $\mathrm{B}_{0}=0$ and define the region

$$
\mathrm{D}_{\mathrm{a}}=\{\mathrm{x} \mid-\mathrm{a}<\mathrm{x}<\mathrm{a}, \mathrm{x}, \mathrm{a} \in \mathrm{IR}\} \mathrm{a}=\text { where } \mathrm{a} \text { is a constant. }
$$

Prove that

$$
\begin{equation*}
\mathrm{P}\left(\mathrm{~B}_{\mathrm{t}} \boldsymbol{\varphi} \mathrm{D}_{\mathrm{a}}\right)=2\left(\frac{a}{\sqrt{t}}\right)-1 \tag{3marks}
\end{equation*}
$$

(iii) Let B_{t} be a Brownian motion of IR, $\mathrm{B}_{0}=0$

Prove that:

$$
\begin{equation*}
E\left[B_{t}^{2 k}\right]=\frac{(2 k)!}{2^{k} k!} \mathrm{t}^{\mathrm{k}} \mathrm{k} \text { ? IN } \tag{4marks}
\end{equation*}
$$

[You may find the following duplication formular for a gamma function useful

$$
\Gamma\left(n+\frac{1}{2}\right)=\sqrt{\pi} \cdot \frac{\Gamma_{(2 n)}}{2^{2 n-1} \Gamma_{(n)}}
$$

(iii) Define a diffusion and explain how it is related to the Brownian motion.
[2 marks]
(iv) What is a mean reverting process and what can be modelled by it? [1mark]
(b) (i) Why is a Geometric Brownian motion a better model of share prices rather than the Brownian motion itself? [2 marks]
(ii) Define a Levy process and explain how it differs from a Brownian motion.
[2 marks]
(iii) Explain how you can model the contribution to the Levy process X_{t} of jumps that are in the range (a, b), and how you would also model the number of jumps of sizes in (a, b).
[4 marks]
(iv) State the stochastic differential equation of a Geometric Levy process.
[1mark]
(v) Why is a Geometric Levy process a better model of share prices as compared with the Geometric Brownian motion in some markets?
[1 mark]
[Total 20 marks]

Question 5

(a) (i) For a Markov chain, what is a stationary probability distribution?
[2 marks]
(ii) What is an irreducible Markov chain?
[1mark]
(iii) What can be said about the stationary probability distribution of an irreducible Markov chain with a finite state space?
[1 mark]
(b) Each year a man trades his car for a new one. If he has an Alfa Romeo, he trades it for a BMW. If he has a BMW he trades it for a Corolla. However if he has a Corolla, he is just as likely to trade it for a new Alfa Romeo as to trade it for a BMW or a Corolla. In the year 2000, he bought his first car, which is a corolla.

Find the probability that he has a
(i) 2002 Corolla
(ii) 2002 Alfa Romeo
(iii) 2003 BMW
(iv) 2003 Corolla [9 marks]
(c) For the man in (b) above, how often will he have each of the three cars in the long run? Express as \% of time.
[4 marks]
[Total 17 marks]

Question 6

(a) (I) Let Xt be such that

$$
\mathrm{dX} \mathrm{X}_{\mathrm{t}}=\mu \mathrm{dt}+(\text { (9) } \mathrm{dBt}
$$

and let $f: ~ \Re \rightarrow \Re$ be twice differentiable.
By considering $f(\mathrm{Xt})$, state Ito's lemma. [1mark]
(ii) Let $\mathrm{Xt}=\mathrm{ct}+\alpha \mathrm{Bt}$ and note that

$$
\mathrm{dXt}=\mathrm{cdt}+\alpha \mathrm{dBt}
$$

We define the process Yt by

$$
\stackrel{1}{\mathrm{Y}}=\mathrm{e}^{\mathrm{Xt}}
$$

Prove that

$$
d Y_{t}=\left(c+1 / 2 \alpha^{2}\right) Y_{t} d_{t}+\alpha Y_{t} d B_{t}
$$

[3 marks]
(iii) Use I to 's lemma to prove that

$$
\int_{0}^{t} B_{s}^{2} d B_{s}=\frac{1}{3} B_{t}^{3}-\int_{0}^{t} B_{s} d s
$$

[3 marks]
(c) Find the solutions of the following Stochastic differential equations.
(i) $\quad \mathrm{dX}_{\mathrm{t}}=\mathrm{X}_{\mathrm{t}} \mathrm{d}_{\mathrm{t}}+\mathrm{dB}_{\mathrm{t}} \quad$ [consider $\left.d\left(e^{-t} X_{t}\right)\right]$
[2 marks]
(ii) $\quad \mathrm{dX}_{\mathrm{t}}=\left(\mathrm{m}-\mathrm{X}_{\mathrm{t}}\right) \mathrm{d}_{\mathrm{t}}+\sigma \mathrm{dB}_{\mathrm{t}} \quad$ [mean reverting Ornstein-Uhlenbeck process.]
[2 marks]
(c) (i) What is the distribution of

$$
\begin{gathered}
\int_{0}^{t} f(s) d B s \quad \text { and what is } \\
E\left[\int_{0}^{t} f(s) d B s\right] \text { and } \operatorname{var}\left[\int_{0}^{t} f(s) d B s\right]
\end{gathered}
$$

(ii) Using your results from c(i) above find $E\left[X_{t}\right]$ and var $\left[X_{t}\right]$ for the process in b(ii) above.
[3 marks]
(iii) Given an interpretation of $E\left[X_{t}\right]$ [1 marks]
[Total 17 marks]
Question 7
(a) Obtain the Auto Correlation Function (ACF) of the MA(2) process $Z_{t}=a_{t}-\frac{3}{4} a_{t-1}+\frac{1}{8} a_{t-2}$ in terms of $\left(a_{t}\right)=\sigma_{a}^{2}=\operatorname{var}\left(a_{t-k}\right)$ for $\mathrm{k}=1,2$.
Where at at is a white noise process.
[4 marks]
(b) State conditions that must be satisfied to ensure the stationarity and invertibility of $\mathrm{AR}(\mathrm{p})$ and $\mathrm{MA}(\mathrm{q})$ process respectively.
Are the following processes (i) stationary (ii) invertible?
(bi) $Z_{t}=\frac{1}{2} Z_{t-1}+a_{t}$
(bii) $Z_{t}=a_{t}-a_{t-1}+\frac{1}{2} a_{t-2}$
(biii) $Z_{t}=\frac{1}{2} Z_{t-1}+a_{t}+2 a_{t-1}$
[5 marks]
(c) A Markov process $\mathrm{Z}_{\mathrm{t}}+\mathrm{p} \mathrm{Z}_{\mathrm{t}-1}=\mathrm{a}_{\mathrm{t}}|\mathrm{p}|<1$ cannot be observed directly but the process $\mathrm{Y}_{\mathrm{t}}=\mathrm{Z}_{t}+\mathrm{b}_{\mathrm{t}}$ is observed where a_{t} and b_{t} are uncorrelated white noise processes with variances $\sigma_{a}^{2}, \sigma_{b}^{2}$ respectively.

Show that the autocovaniance function of Y_{t} is given by

$$
\begin{align*}
& \gamma\left(\left(_{0}\right)=\frac{\sigma_{a}^{2}+\left(1-p^{2}\right) \sigma_{b}^{2}}{1-p^{2}}\right. \\
& \gamma(k)=\frac{(-p)^{k} \sigma_{a}^{2}}{1-p^{2}} \quad \mathrm{k} \geq 1 \tag{6marks}
\end{align*}
$$

(d) Given a time series of economic importance and an appropriate statistical package, explain the various steps necessary to identify, estimate and check a satisfactory model for the data.
[4 marks]
[Total 19 marks]

Question 8

(a) (i) What is a filtration defined on a measurable space (Ω, F)?
(ii) When is a stochastic process $\left\{X_{t}\right\}_{t} \geq 0$ on ($\Omega, \mathrm{F}, \mathrm{P}$) called a martingale w.r.t filtration $\left\{M_{t}\right\}_{t \geq 0}$?
(iii) Why is the study of martingale processes important in "modern" finance theory?
[6marks]
(b) Prove that the following processes are martingales w.r.t the filtration $F_{t}=\sigma\left\{B_{s} ; 0 \leq s \leq t\right\}$
(i) $B_{t}^{2}-t$
(ii) $e^{\lambda B E-\frac{1}{2} \lambda^{2} t}$
(iii) σB_{t}
(c) (i) State the continuous time optional stopping theorem.
(ii) The price of a share follows a geometric Brownian motion

$$
S_{t}=S_{0} e^{\sigma B_{t}+\mu_{t}} \text { with } \mu>0 \quad B_{0}=0
$$

It is currently valued at S_{0} and will be sold when its price reaches $L>\mathrm{S}_{\mathrm{o}}$. How long would you expect this to take?
[5 marks]
[Total 17 marks]

