NATI ONAL UNI VERSITY OF SCI ENCE AND TECHNOLOGY

BACHELOR OF COMMERCE (HONOURS) DEGREE

TOPICS IN APPLI ED MATHEMATI CS FOR ACTUARI AL SCI ENCE - CI N 2215

APRI L/ MAY 2003 SECOND SEMESTER EXAMI NATI ON

TIME : 3 HOURS

INSTRUCTI ONS TO CANDI DATES

1. Candidates should attempt ALL six question.
2. Start your answer to each new question on a separate sheet.

Question 1:

Consider the following model of a certain commodity market. It is assumed that the price P , supply S and demand D are functions of time and that the rate of change of the price is proportional to the difference between the demand and the supply.

$$
\frac{d p}{d t}=k(D-S) \quad \mathrm{k}>0
$$

(a) If it is assumed that
$\mathrm{D}=\mathrm{c}-\mathrm{dP}$ and $\mathrm{S}=\mathrm{a}+\mathrm{bP}$ with $0<\mathrm{P}<\mathrm{c} / \mathrm{d}$ where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d are constraints.
(i) Comment on the forms of D and S as models of demand and supply respectively.
(ii) Determine $\mathrm{P}(\mathrm{t})$
(iii) Analyze the behaviour of $\mathrm{P}(\mathrm{t})$ as t increases
[2 marks]
[5 marks]
[3 marks]
(b) If it is assumed instead that

$$
D=c-d \cdot P \text { and } S=a+b \cdot P+q \sin 80 t
$$

(i) Comment on the forms of D and S in (b).
[2 marks]
(ii) Determine $\mathrm{P}(\mathrm{t})$
[7 marks]
(iii) Analyze the behaviour of $\mathrm{P}(\mathrm{t})$ as t increases
[5 marks]
[For part (b) you may find the following results useful

$$
\begin{aligned}
& \int e^{a x} \sin b x d x=\frac{e^{a x}}{a^{2}+b^{2}}[a \sin b x-b \cos b x] \\
& \cos (\mathrm{A}+\mathrm{B})=\cos \mathrm{A} \cos \mathrm{~B}-\sin \mathrm{A} \sin \mathrm{~B}]
\end{aligned}
$$

[Total 24 marks]

Question 2:

Let $X(t)$ denote the size of a population at time (t).
Let r be the net growth rate growth rate, given as a per capita rate. The rate of change of the population is given by

$$
\frac{d x}{d t}=r(x, t) \cdot X
$$

(i) Explain the reasoning under a logistic model that assumes that

$$
r(x, t)=r_{0}\left(1-\frac{x}{k}\right) \quad r, k>0
$$

[2 marks]
(ii) For the logistic model

$$
\frac{d x}{d t}=r_{0}\left(1-\frac{x}{k}\right) x
$$

Find a solution of this differential equation given that at $t=0 \quad X=X_{0}$

[9 marks]

(iii) Show that if $\mathrm{x}_{0}>0$ then $\mathrm{X}(\mathrm{t})$ approaches k as t increases.
[2 marks]
(iv) By considering cases $X_{0}>k$ and $X_{0}<k$ separately, draw the graphs of $X(t)$ as t increases indicating clearly the carrying capacity k of the population.
[4 marks]
[Total: 17 marks]

Question 3:

(a) The fibonacci numbers $a_{0}, a_{1}, a_{2}, \ldots$ are defined by the relation

$$
a_{n+2}=a_{n+1}+a_{n} \text { where } a_{0}=0 \text { and } a_{1}=1 .
$$

(i) Find the first eight fibonacci numbers.
[2 marks]
(ii) Where are these numbers used in finance and what were they originally created for?
[2 marks]
(iii) Find a formula for a_{n}.
[9 marks]
(b) Solve the following difference equations:
(i) $\quad a_{n+2}-5 a_{n+1}+6 a_{n}=2 n+2$ if $a_{0}=1 \quad a_{1}=1$
[11 marks]
(ii) $\quad a_{n+3}-2 a_{n+2}-a_{n+1}+2 a_{n}=0 \quad$ if $a_{0}=0 \quad a_{1}=1 \quad a_{2}=1$ Hence find a_{10}
[9 marks]
(iii) $a_{n+2}-4 a_{n+1}-4 a_{n}=0 \quad$ if $a_{0}=1 \quad a_{0}=4$
[7 marks] [Total 40 marks]

Question 4:

(a) Let A be a non-singular matrix with distinct eigenvalues. Let B be a vector of
corresponding eigenvectors of A
(i) Prove that $\left[B^{-1} A B\right]^{n}=B^{-1} A^{n} B$
[7 marks]
(ii) If $A=\quad\left(\begin{array}{ll}17 & -6 \\ 35 & -12\end{array}\right)$

Find A^{n} for $n=1,2,3, \ldots$
[16 marks]
(iii) Use the above result to find A^{5}
[2 marks]
(b)
(i) Give an expression of the inverse of a matrix A in terms of its cofactors.
[2 marks]
(ii) Hence or otherwise find the inverse of the following matrix

$$
\left(\begin{array}{rrr}
2 & 3 & 2 \\
1 & 2 & -3 \\
3 & 4 & 1
\end{array}\right)
$$

[8 marks]
(iii) Solve the system of equations
$2 x+3 y+2 z=9$
$x+2 y-3 z=14$
$3 x+4 y+z=16$
[7 marks]
[Total 42 Marks]

Question 5:

The above is a multiple state model of a terminal disease. Once you get into state S you can only move to state D. Transitions from the healthy state can be to either state S or D. It can be shown that the transition probabilities satisfy the following differential equations. [You are not required to derive these]. Assume σ, μ, v are constants.

From H State:

$$
\begin{array}{ll}
\frac{d_{t} P_{x}^{H H}}{d t}=-(\sigma+\mu)_{t} P_{x}^{H H} & \text { with }{ }_{0} P_{x}^{H H}=1 \\
\frac{d_{t} P_{x}^{H S}}{d t}={ }_{t} P_{x}^{H H} \cdot \sigma-v_{\cdot} P_{x}^{H S} & \text { with }{ }_{0} P_{x}^{H S}=0 \\
\frac{d_{t} P_{x}^{H D}}{d t}={ }_{t} P_{x}^{H H} \cdot \mu+{ }_{t} P_{x}^{H S} \cdot v & \text { with }{ }_{0} P_{x}^{H D}=0 \tag{e3}
\end{array}
$$

From S state:

$$
\begin{array}{ll}
\frac{d}{d t}{ }_{t} P_{x}^{S S}=v_{{ }_{t}} P_{x}^{S S} & \text { with }{ }_{0} P_{x}^{S S}=1 \tag{e4}\\
\frac{d_{t} P_{x}^{S D}}{d_{t}}=v_{t} P_{x}^{S S} & \text { with }{ }_{o} P_{x}^{S D}=0
\end{array}
$$

(i) Solve equation (e1) with the given boundary conditions.
(ii) What type of differential equation is (e2)? Solve (e2) taking into account the given initial conditions and any other useful result.
[10 marks]
(iii) Either by solving completely, or giving a detailed explanation, how would you solve (e3)? A solution or an explanation is sufficient.
[7 marks]
(iv) Solve differential equation (e4)
[7 marks]
(v) Solve differential equation (e5) using any other results you might need.
[7 marks]
(vi) In solving (e1) and (e4), for the solution to exist, what did we assume about ${ }_{t} P_{x}^{H H}$ and ${ }_{t} P_{x}^{S S}$ as functions of t ?
[2 marks]
[Total 10 marks]

Question 6

(a) Compute the following determints
$\left|\begin{array}{rrrr}6 & -5 & 8 & 4 \\ 9 & 7 & 5 & 2 \\ 7 & 5 & 3 & 7 \\ -4 & 8 & -8 & 3\end{array}\right|$
(c) Find the eigenvalues and corresponding eigenvectors of the following matrix:

$$
A=\left(\begin{array}{llc}
-2 & -9 & 5 \\
-5 & -10 & 7 \\
-9 & -21 & 14
\end{array}\right)
$$

(c) Find matrices which transform matrix in (b) into diagonal form.
[17 marks]
[10 marks] [Total 37 marks]

END OF EXAMI NATI ON PAPER

