NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

FACULTY OF COMMERCE

DEPARTMENT OF INSURANCE AND ACTUARIAL SCIENCE

B.COMM (HONOURS) DEGREE IN ACTUARIAL SCIENCE

TOPICS IN APPLIED MATHEMATICS - CIN 2215

AUGUST 2009 - SECOND SEMESTER EXAMINATIONS

DURATION: 3 HOURS

Instructions to Candidates

1. Attempt all SIX (6) Questions
2. To Obtain Full Marks Show ALL appropriate steps to your answers

Requirements

1. Actuarial Tables (2002) Edition
2. Non-programmable Scientific calculator

P1.
(i) Apply the Laplace expansion to reduce A down to co-factors of order 2 using column 3 , given that:

$$
A=\left[\begin{array}{cccc}
5 & 4 & 2 & 1 \\
2 & 3 & 1 & -2 \\
-5 & -7 & -3 & 9 \\
1 & 2 & -1 & 4
\end{array}\right]
$$

[4 marks]
(ii) Apply Cramer's rule to solve the following set of simultaneous equations for all values of \boldsymbol{p} :

$$
\begin{aligned}
& p x+y=1 \\
& x-y+z= \\
& 2 y-z=3
\end{aligned}
$$

$$
x-y+z=0 \quad[6 \text { marks }]
$$

[Total 10 Marks]
P2. A Markov Chain has the transition matrix

$$
\mathrm{T}=\left[\begin{array}{ccc}
\frac{1}{4} & \frac{1}{4} & \frac{1}{2} \\
1 & 0 & 0 \\
\frac{1}{2} & \frac{1}{4} & \frac{1}{4}
\end{array}\right]
$$

(i) Show that T has just two distinct non-trivial eigenvalues.
(ii) Find the three eigenvectors of T denoted by $\mathbf{r}_{1}, \mathbf{r}_{2}$, and \mathbf{r}_{3}.
(iii) Find the Jordan decomposition matrix \mathbf{J}, a matrix \mathbf{C} and its inverse \mathbf{C}^{-1} such that $\mathrm{T}=\mathbf{C} \mathbf{J C}^{-1}$ given that:

$$
\mathbf{J}=\left[\begin{array}{ccc}
\lambda_{2} & 1 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & 1
\end{array}\right], \text { where } \lambda_{2} \text { is a non unit eigenvector. }[5 \text { marks] }
$$

(iv) Input a formula for \mathbf{J}^{n} and find T^{n} and its limit as $\mathrm{n} \rightarrow \infty$, interpret your result.
[5 marks]
[Total 20 Marks]
P3.
(a) Find the solutions of the following difference equations:
(i) $u_{k+1}-3 u_{k}+u_{k-1}+u_{k-2}$
(ii) $u_{k+2}-5 u_{k+1}+6 u_{k}=2 k+2$, if $u_{0}=0, u_{1}=1$
(b) The probability of a success in a single trial is $\frac{1}{3}$, if u_{n} is the probability that there are no two consecutive successes in \boldsymbol{n} trials;
(i) Show that u_{n} satisfies: $u_{n+1}=\frac{2}{3} u_{n}+\frac{2}{9} u_{n-1}$
(ii) What are the values of u_{1} and u_{2} ?
(iii) Hence show that: $u_{n}=\frac{1}{6}\left[(3+2 \sqrt{3})\left(\frac{1+\sqrt{3}}{3}\right)+(3-2 \sqrt{3})\left(\frac{1-\sqrt{3}}{3}\right)\right]$
[4 marks]
[Total 19 Marks]
P4.
(a) The logistic growth model of population at time $\mathbf{t}, \mathbf{X (t)}$ is given by the following differential equation:

$$
\frac{\mathrm{d} \mathrm{X}}{\mathrm{dt}}=\mathrm{r}_{0}\left(1-\frac{\mathrm{X}}{\mathrm{k}}\right) \mathrm{X}, \mathrm{X}(0)=\mathrm{X}_{0} \text {, where } \mathrm{r}_{0} \text { and } \mathrm{k} \text { are positive constants }
$$

Show that the solution of the above differential equation is given by:

$$
\mathrm{X}(\mathrm{t})=\frac{\mathrm{k}}{1-\left(1-\frac{\mathrm{k}}{\mathrm{X}_{0}}\right) e^{-\mathrm{r}_{0} \mathrm{t}}}
$$

(b) Solve the following differential equation:

$$
y^{11}+y^{1}+y=\sin x+3 \cos x
$$

P5.

In a birth and death process with immigration the birth and death rates are given by $\lambda_{n}=n \lambda+\alpha$ and $\mu_{n}=n \mu$, where α represents a constant immigration rate.
(i) Show that the probability generating function $G(s, t)$ satisfies:

$$
\frac{\partial G(s, t)}{\partial t}=(\lambda s-\mu)(s-1) \frac{\partial G(s, t)}{\partial s}+\alpha(s-1) G(s, t)
$$

(ii) Show that, if $G(s, t)=(\mu-\lambda s)^{-\alpha / \lambda} S(s, t)$. Then $S(s, t)$ satisfies

$$
\frac{\partial S(s, t)}{\partial t}=(\lambda s-\mu)(s-1) \frac{\partial S(s, t)}{\partial s}
$$

(iii) Assuming a modified initial condition for $\mathrm{S}(\mathrm{s}, \mathrm{t})$ of an initial population size of n_{0}. Solve the partial differential equation for $\mathrm{S}(\mathrm{s}, \mathrm{t})$ using a suitable change of variable and confirm that

$$
G(s, t)=\frac{(\mu-\lambda)^{\alpha / \lambda}\left[(\mu-\lambda s)-\mu(1-s) \mathrm{e}^{(\lambda-\mu) t}\right]^{n_{0}}}{\left[(\mu-\lambda s)-\lambda\left((1-s) \mathrm{e}^{(\lambda-\mu) t}\right]^{n_{0}+(\alpha / \lambda)}\right.}
$$

[6 marks]
(iv)
(a) Find $p_{0}(t)$, the probability that the population is zero at time t.
[3 marks]
(b) Why is there no extinction in this case?
[1 mark]
(c) Hence show that $\lim _{t \rightarrow \infty} p_{0}(t)=\left(\frac{\mu-\lambda}{\mu}\right)^{\alpha / \lambda}$, if $\lambda<\mu$
(d) What is the limit if $\lambda>\mu$?
[1 mark]
[2 marks]
(v) The long term behaviour of the process for $\lambda<\mu$ can be investigated by looking at the limit of the probability generating function as $t \rightarrow \infty$.
(a) Show that $\lim _{t \rightarrow \infty} G(s, t)=\left(\frac{\mu-\lambda}{\mu-\lambda s}\right)^{\alpha / \lambda}$ and interpret this result
(b) What is the long-term mean population?
[2 marks]
[2 marks]
[Total 25 Marks]
P5. Write short notes on the following steps in VBA programming in Excel which will display a 'Welcome' message box:

1. Planning and Design
[2 marks]
2. Designing the interface
[3 marks]
3. Setting the properties
[2 marks]
4. Writing the code
[3 marks]
5. Running the Application
