NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY FACULTY OF COMMERCE

DEPARTMENT OF INSURANCE AND ACTUARIAL SCIENCE B.COMM (HONOURS) DEGREE IN ACTUARIAL SCIENCE TOPICS IN APPLIED MATHEMATICS - CIN 2215 AUGUST 2009 - SECOND SEMESTER EXAMINATIONS DURATION: 3 HOURS

Instructions to Candidates

- 1. Attempt all SIX (6) Questions
- 2. To Obtain Full Marks Show ALL appropriate steps to your answers

Requirements

- 1. Actuarial Tables (2002) Edition
- 2. Non-programmable Scientific calculator

P1.

(i) Apply the Laplace expansion to reduce A down to co-factors of order 2 using column 3, given that:

$$\mathbf{A} = \begin{bmatrix} 5 & 4 & 2 & 1 \\ 2 & 3 & 1 & -2 \\ -5 & -7 & -3 & 9 \\ 1 & 2 & -1 & 4 \end{bmatrix}$$

[4 marks]

[Total 10 Marks]

(ii) Apply Cramer's rule to solve the following set of simultaneous equations for all values of p:

px + y = 1	
x - y + z = 0	[6 marks]
2y - z = 3	

P2. A Markov Chain has the transition matrix

 $T = \begin{bmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{2} \\ 1 & 0 & 0 \\ \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \end{bmatrix}$

(i) Show that T has just two distinct non-trivial eigenvalues. [5 marks]

- (ii) Find the three eigenvectors of T denoted by $\mathbf{r}_1, \mathbf{r}_2$, and \mathbf{r}_3 . [5 marks]
- (iii) Find the Jordan decomposition matrix **J**, a matrix **C** and its inverse **C**⁻¹ such that $T = CJC^{-1}$ given that:

$$\mathbf{J} = \begin{vmatrix} \lambda_2 & 1 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & 1 \end{vmatrix}, \text{ where } \lambda_2 \text{ is a non unit eigenvector.} \qquad [5 \text{ marks}]$$

(iv) Input a formula for J^n and find T^n and its limit as $n \to \infty$, interpret your result. [5 marks] [Total 20 Marks]

P3.

(a) Find the solutions of the following difference equations:

(i) $u_{k+1} - 3u_k + u_{k-1} + u_{k-2}$ [4 marks] (ii) $u_{k+2} - 5u_{k+1} + 6u_k = 2k+2$, if $u_0 = 0$, $u_1 = 1$ [5 marks]

(b) The probability of a success in a single trial is $\frac{1}{3}$, if u_n is the probability that there are no two consecutive successes in *n* trials;

(i) Show that u_n satisfies: $u_{n+1} = \frac{2}{3}u_n + \frac{2}{9}u_{n-1}$ [3 marks] (ii) What are the values of u_1 and u_2 ? [3 marks] (iii) Hence show that: $u_n = \frac{1}{6} \left[\left(3 + 2\sqrt{3} \left(\frac{1+\sqrt{3}}{3}\right) + \left(3 - 2\sqrt{3} \left(\frac{1-\sqrt{3}}{3}\right)\right) \right]$ [4 marks] [Total 19 Marks]

P4.

(a) The logistic growth model of population at time **t**, **X**(**t**) is given by the following differential equation:

 $\frac{dX}{dt} = r_0 \left(1 - \frac{X}{k}\right) X, X(0) = X_0, \text{ where } r_0 \text{ and } k \text{ are positive constants}$

Show that the solution of the above differential equation is given by:

$$X(t) = \frac{k}{1 - \left(1 - \frac{k}{X_0}\right)e^{-r_0 t}}$$
 [6 marks]

(b) Solve the following differential equation:

$$y^{11} + y^1 + y = \sin x + 3\cos x$$
 [7 marks]
[Total 13 Marks]

P5.

In a birth and death process with immigration the birth and death rates are given by $\lambda_n = n\lambda + \alpha$ and $\mu_n = n\mu$, where α represents a constant immigration rate.

(i) Show that the probability generating function G(s,t) satisfies:

$$\frac{\partial G(s,t)}{\partial t} = (\lambda s - \mu)(s-1)\frac{\partial G(s,t)}{\partial s} + \alpha(s-1)G(s,t)$$
 [5 marks]

(ii) Show that, if $G(s,t) = (\mu - \lambda s)^{-\alpha/\lambda} S(s,t)$. Then S(s,t) satisfies

$$\frac{\partial S(s,t)}{\partial t} = (\lambda s - \mu)(s-1)\frac{\partial S(s,t)}{\partial s}$$
[3 marks]

(iii) Assuming a modified initial condition for S(s,t) of an initial population size of n_0 . Solve the partial differential equation for S(s,t) using a suitable change of variable and confirm that

$$G(s,t) = \frac{(\mu - \lambda)^{\alpha/\lambda} [(\mu - \lambda s) - \mu(1 - s)e^{(\lambda - \mu)t}]^{n_0}}{[(\mu - \lambda s) - \lambda((1 - s)e^{(\lambda - \mu)t}]^{n_0 + (\alpha/\lambda)}}$$
[6 marks]

(iv)

(a) Find $p_0(t)$, the probability that the population is zero at time t.	[3 marks]
(b) Why is there no extinction in this case?	[1 mark]
$(\mu - \lambda)^{\alpha/\lambda}$	
(c) Hence show that $\lim_{t \to \infty} n(t) = \left \frac{\mu - \lambda}{2} \right $ if $\lambda < \mu$	[1 mark]

(c) Hence show that
$$\lim_{t \to \infty} p_0(t) = \left(\frac{\mu - \lambda}{\mu}\right)$$
, if $\lambda < \mu$ [1 mark]
(d) What is the limit if $\lambda > \mu$? [2 marks]

(v) The long term behaviour of the process for $\lambda < \mu$ can be investigated by looking at the limit of the probability generating function as $t \to \infty$.

(a) Show that $\lim_{t \to \infty} G(s,t) = \left(\frac{\mu - \lambda}{\mu - \lambda s}\right)^{\mu/\lambda}$	and interpret this result	[2 marks]
(b) What is the long-term mean population?		[2 marks]
		[Total 25 Marks]

P5. Write short notes on the following steps in VBA programming in Excel which will display a 'Welcome' message box:

1. Planning and Design	[2 marks]
2. Designing the interface	[3 marks]
3. Setting the properties	[2 marks]
4. Writing the code	[3 marks]
5. Running the Application	[3 marks]
	[Total 13 Marks

*****END OF EXAMINATION*****