ACTUARIAL STATISTICS III (STOCHASTIC MODELLING) : CIN 4111

NOVEMBER/DECEMBER 2004 FIRST SEMESTER EXAMINATION

DURATION : 3 HOURS

Instructions To Candidates

1. Attempt all questions, beginning your answer to each question on a separate sheet.
2. Mark allocations are shown in brackets

Additional Examination Material

Non-programmable electronic calculator
Tables of Actuarial Examinations (Actuarial Tables)

Quest6in 1

In the context of a discrete time Markov chain, define the terms:
(i) persistent
[2 marks]
(ii) transient
(iii) aperiodic
[2 marks]
[2 marks]
[Total: 6 marks]

Question 2

A No Claims Discount (NCD) scheme for motor insurance has three levels of discount ; 0\%, 20\% and 60%. The rules for moving between these levels at the end of each year are as follows:

If the driver has made no claims in the previous year, she/he moves to the next higher level of discount, or remains at 60% discount. If the driver has made one or more claims in the year, she/he moves to the next lower level of discount, or remains at 0%.

The full premium for each year is $\$ 1000$. Let q denote the probability that a driver makes a claim in a year.
(i) Derive expressions in terms of q for the stationery distribution for this NCD Scheme.
[6 marks]
(ii) After a very long time in the scheme, a driver makes a claim. Calculate the expected value of the premium the driver will be asked to pay in the following year assuming:
(a) $\quad q=0.1$
(b) $\quad q=0.2$
[6 marks]
(iii) Comment on your answers to parts (ii) (a) and (ii) (b) above.

Question 3

Let $X_{1}, X_{2}, X_{3} \ldots$ be identically and independently distributed with $P\left(X_{1}=1 / 2\right)=p$ and $P\left(X_{1}=-1 / 2\right)=1-p$.
Let

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{n}}=\sigma\left\{\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots \ldots . \mathrm{X}_{\mathrm{n}}\right\} \quad \text { and consider the process } \\
& \mathrm{Z}_{n}=\pi_{i=1}^{n}\left(1+x_{i}\right) \quad, \mathrm{Z}_{0}=1
\end{aligned}
$$

For what value(s) of p is Z_{n} ?
(a) a supermartingale
[3 marks]
(b) a submartingale
[3 marks]
(c) a martingale
[3 marks]
(Give reasons for your answers).
[Total: 9 marks]

Question 4

Let X_{t} be an Ornstein - Uhlenbeck process satisfying
$d X_{t}=-a\left(X_{t}-b\right) d t+\sigma B_{t}$ where $\mathrm{a}>0$ and B_{t} is a standard Brownian motion. Let $\mathrm{S}(x)$ be the function

$$
\mathrm{S}(x)=\int_{0}^{x} \exp \left(\frac{a(y-b)^{2}}{\sigma^{2}}\right) d y
$$

Show that $S\left(X_{t}\right)$ is a local martingale.
[7 marks]

Question 5

A Markov chain has states labeled 0,1 and 2 with transition matrix

$$
P=\left(\begin{array}{ccc}
1 / 2 & 0 & 1 / 2 \\
1 & 0 & 0 \\
1 / 4 & 1 / 2 & 1 / 4
\end{array}\right)
$$

(i) Find P_{01} (2)
(ii) If the chain is in state 1 at time $n=5$, what is the probability that it is in state 0 at time $n=7$?
(iii) Does this chain have a stationary distribution? Is it unique?
[3 marks]
(iv) Now suppose that $p(0)=(1 / 3,1 / 3,1 / 3)$.

Find $\mathrm{P}\left(\mathrm{X}_{0}=i \mid \mathrm{X}_{3}=2\right)$ for $i=0,1,2$
(i.e. find the initial distribution of the chain given that the chain is in state 2 after 3 steps.)
[5 marks]
[Total: 14 marks]

Question 6

Let $X_{1}, X_{2}, \ldots X_{3} \ldots \ldots$ be independent and identically distributed random variables with $\mathrm{E}\left(\left|\mathrm{X}_{1}\right| \mid\right)<\infty$ and let $\mu=\mathrm{E}\left(\mathrm{X}_{1}\right)$
Let $S_{0}=0$ and $S_{n}=X_{1}+X_{2}+\ldots \ldots+X_{n}$ for $n \geq 1$.

Show that $M_{n}=S_{n}-\mu_{n}$ is a martingale relative to an appropriate filtration which you should specify.

Question 7

The following AR(1) model
$\mathrm{Y}_{\mathrm{t}}-\mu=\phi\left(\mathrm{Y}_{\mathrm{t}-1}-\mu\right)+\mathrm{Z}_{\mathrm{t}}$ is fitted to a series of length 40. The fitted parameter values are:
$\hat{\Phi}=-0.7684, \quad \hat{\mu}=100.57, \hat{\sigma}_{z}^{2}=114.43$

The last 10 observations in the series are:
$112,101,89,116,84,118,72,118,86,96$
(i) Forecast the next 3 observations in the series.
(ii) Find the 95\% confidence intervals for each forecast in (i).

Question 8

Let B be a Brownian motion (with $\mathrm{B}_{0}=0$) and let $\mathrm{Y}_{\mathrm{t}}=B_{t}^{n}$ (i.e. nth power of B_{t}). By applying Ito's formula to the function $\mathrm{f}(x)=x^{\mathrm{n}}$, show that Y_{t} satisfies the following stochastic differential equation:

$$
d Y_{t}=n Y_{t}^{1-\frac{1}{n}} d B_{t}+\frac{n(n-1)}{2} Y_{t}^{1-\frac{2}{n}} d t
$$

[6 marks]

END OF EXAMINATION PAPER!!!

