NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

B COMM. (HONOURS) ACTUARIAL SCIENCE

ACTUARIAL STATISTICS III (STOCHASTIC MODELLING) : CIN 4111

NOVEMBER/DECEMBER 2004 FIRST SEMESTER EXAMINATION

DURATION : 3 HOURS

Instructions To Candidates

1. Attempt all questions, beginning your answer to each question on a separate sheet.

2. Mark allocations are shown in brackets

Additional Examination Material

Non-programmable electronic calculator Tables of Actuarial Examinations (Actuarial Tables)

Quest6in 1

In the context of a discrete time Markov chain, define the terms:

(\cdot)		[2
(1)	persistent	[2 marks]
(ii)	transient	[2 marks]
(iii)	aperiodic	[2 marks]
		[Total: 6 marks]

Question 2

A No Claims Discount (NCD) scheme for motor insurance has three levels of discount ; 0%, 20% and 60%. The rules for moving between these levels at the end of each year are as follows:

If the driver has made no claims in the previous year, she/he moves to the next higher level of discount, or remains at 60% discount. If the driver has made one or more claims in the year, she/he moves to the next lower level of discount, or remains at 0%.

The full premium for each year is \$1 000. Let q denote the probability that a driver makes a claim in a year.

(i) Derive expressions in terms of q for the stationery distribution for this NCD Scheme.

[6 marks]

(ii) After a very long time in the scheme, a driver makes a claim. Calculate the expected value of the premium the driver will be asked to pay in the following year assuming:

	(a) $q = 0.1$ (b) $q = 0.2$	[6 marks]
(iii)	Comment on your answers to parts (ii) (a) and (ii) (b) above.	[4 marks] [Total: 16 marks]

Question 3

Let $X_1, X_2, X_3...$ be identically and independently distributed with $P(X_1 = \frac{1}{2}) = p$ and $P(X_1 = -\frac{1}{2}) = 1 - p$.

Let

$$F_n = \sigma \{X_1, X_2, \dots, X_n\}$$
 and consider the process
 $Z_n = \prod_{i=1}^n (1 + x_i)$, $Z_0 = 1$

For what value(s) of p is Z_n ?

(a) a supermartingale

(b) a submartingale

(c) a martingale

(Give reasons for your answers).

Question 4

Let Xt be an Ornstein - Uhlenbeck process satisfying

 $dX_t = -a(X_t - b) dt + \sigma dB_t$ where a > 0 and B_t is a standard Brownian motion. Let S(x) be the function

$$S(x) = \int_0^x \exp\left(\frac{a(y-b)^2}{\sigma^2}\right) dy$$

Show that $S(X_t)$ is a local martingale.

Question 5

A Markov chain has states labeled 0, 1 and 2 with transition matrix

	$\boldsymbol{\mathcal{C}}$		\sim
	1/2	0	1⁄2
$\mathbf{P} =$	1	0	0
	1⁄4	1/2	1⁄4
)

(i) Find $P_{01}(2)$

[3 marks]

(ii) If the chain is in state 1 at time n = 5, what is the probability that it is in state 0 at time n = 7? [3 marks] (iii) Does this chain have a stationary distribution? Is it unique? [3 marks] (iv) Now suppose that $p(0) = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$.

Find $P(X_0 = i | X_3 = 2)$ for i = 0, 1, 2(i.e. find the initial distribution of the chain given that the chain is in state 2 after 3 steps.) [5 marks] [Total: 14 marks]

[3 marks] [3 marks] [3 marks] [Total: 9 marks]

[7 marks]

Question 6

Let $X_1, X_2, \dots, X_3, \dots$ be independent and identically distributed random variables with $E \lfloor |X_1| \rfloor \rfloor < \infty$ and let $\mu = E(X_1)$ Let $S_0 = 0$ and $S_n = X_1 + X_2 + \dots + X_n$ for $n \ge 1$.

Show that $M_n = S_n - \mu_n$ is a martingale relative to an appropriate filtration which you should specify. [6 marks]

Question 7

The following AR(1) model

Y_t - $\mu = \phi(Y_{t-1} - \mu) + Z_t$ is fitted to a series of length 40. The fitted parameter values are: $\hat{\Phi} = -0.7684$, $\hat{\mu} = 100.57$, $\sigma_z = 114.43$

The last 10 observations in the series are:

112, 101, 89, 116, 84, 118, 72, 118, 86, 96

(i) Forecast the next 3 observations in the series. [6 marks]

(ii) Find the 95% confidence intervals for each forecast in (i). [9 marks]

[Total : 15 marks]

[6 marks]

Question 8

Let B be a Brownian motion (with $B_0 = 0$) and let $Y_t = B_t^n$ (i.e. nth power of B_t). By applying Ito's formula to the function $f(x) = x^n$, show that Y_t satisfies the following stochastic differential equation:

$$dY_{t} = nY_{t}^{1-\frac{1}{n}} dB_{t} + \frac{n(n-1)}{2}Y_{t}^{1-\frac{2}{n}} dt$$

END OF EXAMINATION PAPER!!!