NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

B. COMM (HONOURS) DEGREE IN ACTUARIAL SCIENCE

FINANCIAL ECONOMICS : CIN 4115

NOVEMBER/DECEMBER 2004 FIRST SEMESTER EXAMINATION

DURATION : 2 HOURS

INSTRUCTIONS TO CANDIDATES

- 1. Attempt all questions
- 2. You must not start writing your answers in the booklet until instructed to do so by the invigilator.
- 3. In addition to this question paper, you require an electronic calculator (non-programmable)
- 1. An investor can choose between 2 investments A and B.

Investment A – the rate of return is distributed uniformly between 4% and 10% Investment B – The rate of return can take only discrete values with the following probabilities

Probability	В
$^{1}/_{5}$	12%
$^{1}/_{5}$	10%
$^{1}/_{5}$	8%
$^{2}/_{5}$	3%

For each investment calculate

(a)	Mean	[2 marks]
(b)	Variance	[2 marks]
(c)	Semi-variance	[4 marks]
(d)	The shortfall probability with level of 6%	[6 marks]
(e)	The mean shortfall with level of 5%	[6 marks] [Total 20 marks]

2. An investor makes his investment decisions based on the log utility function

 $\bigcup(w) = \ln w, \quad w \ge 0 \text{ where } w \text{ denotes his wealth at the end of the period of investment}$

Show that this investor is non-satiated and risk-averse. [6 marks] (a) (b) The investor above has initial wealth of \$20,000. He could invest all his wealth in cash for one year at a guaranteed rate of return of 5% per annum. Alternatively he could invest entirely in shares which over the year have equal probability of earning a rate of return of 10% per annum or of 2% per annum. Determine whether the investor should choose cash or shares. [8 marks] [Total: 14 marks] 3. Consider two risky assets A and B with returns (x) having cumulative probability distribution functions given by: $F_A(x) = x$ and $F_B(x) = \sqrt{x}$ where $0 \le x \le 1$ Verify that A dominates B on the basis of the third order stochastic dominance. [9 marks] 4. Assume the CAPM holds What constitutes the market portfolio in the CAPM? (a) (i) [4 marks] (ii) The valuation interest rate in an asset liability model needs to be consistent with the asset weights. Given that the government state that the valuation interest rate is $(5W_g + 3W_e)\%$, where W_g and W_e are the weights in gilts and equities respectively. Our model calculates that the assets at time t are \$100 million. The model calculates that a benefit of \$120 million must be paid at time t + 5. What proportion must we invest in gilts so that the value of the asset at time t are at least as high as the value of the liabilities. (There are no premiums, expenses or mortality) [7 marks] Give an interpretation for the terms in the equation of the Capital (iii) Market Line. [4 marks] (b) Assume the beta of a security is either (i) $\beta = 0$ or (ii) $\beta < 0$ Compare the expected return of this security in both cases with the risk free rate of return and give an explanation of your observations. [8 marks] [Total 23 marks]

5.	Expl	ain the three forms of efficient market hypothesis (EMH)	[9 marks]
6.	An investor chooses to invest in equities from two counters Boc and Naschco. Boc equities have an expected return of 5%, with standard deviation 15%. Naschco equities are more risky, their expected returned is 10% with standard deviation 25%. The correlation coefficient of the two equity markets is 0.3.		and Naschco. ion 15%. with standard kets is 0.3.
	(i)	Given that the investor has α invested in Boc shares and 1 Naschco shares, state equations for the expected return an deviation for the investor's portfolio.	l – α invested in d standard [8 marks]
	(ii)	The investor is allowed to invest both long and short in B equities. Prove that the investor's opportunity set in \overline{R} - hyperbola with equation $\sigma^2 = a\overline{R}^2 + b\overline{R} + c$	oc and Naschco σ space is a
		Find the values for a, b and c. [Tota	[6 marks] al 14 marks]
7.	A risky security, A has expected return 13% and variance of return 100 %%. Y are advised that the risk-free rate of return is 4%.		rn 100 %%. You
	(i)	Given that A is an efficient portfolio, derive the equation market line.	for the capital [6 marks]

(ii) The expected return on the market (M) is 9%. Using your result in part (i) above calculate the variance of the return on the market. [5 marks]
[Total 11 marks]

END OF EXAMINATION PAPER