NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

B.COMM (ACTUARIAL SCIENCE) HONOURS DEGREE

FINANCIAL ECONOMICS – CIN 4115

NOVEMBER/DECEMBER 2005 FIRST SEMESTER EXAMINATION

DURATION: 3 HOURS

Instructions To Candidates

- 1. Attempt ALL questions, beginning each question on a new sheet.
- 2. For this question paper you are permitted to have an electronic calculator (non programmable)
- 3. You must not start writing your answers until instructed to do so by the invigilator
- 4. Mark allocations are shown in brackets
- 5. Write clearly and show all workings
- 1. (a) Investment projects A and B have both a rate of return that is normally distributed with expected return μ . The variance of the rate of return of project A is σ_A^2 , the variance of the rate of return of project B is σ_B^2 , with $\sigma_A^2 < \sigma_B^2$.

Show that:

- (i) A does not dominate B with respect to first order stochastic dominance
 - [4 marks]
- (ii) A does not dominate B with respect to third order stochastic dominance.

[5 marks]

- (b) A homeowner is considering buying buildings insurance. His current total wealth is \$100 000. Over one year there is a 1% chance of his house suffering \$50 000 of damage, and a 10% chance of suffering \$5 000 of damage.
 - (i) A large insurer sells many thousands of identical policies to homeowners like the one above. What premium should they charge each year if they expect zero profit? [4 marks]

		(ii) The homeo price he is	The homeowner has a log utility function. What is price he is willing to pay for this insurance?		the maximum [6 marks]	
		(iii) Comment of	on your answers in ((i) and (ii).	[3 marks]	
2.	(a)	An investor uses semi-variance as a measure of dispersion. This is consistent with his choice of utility function:				
		$\int a + bx + c$	x^2 for	or $x \le \mu$		
		$O(x) = \begin{cases} a - c\mu^2 + c\mu^2 \end{bmatrix}$	$(b+2c\mu)x$ for	$r x > \mu$		
		Under what conditions does this investor have the properties of risk- averseness and non – satiation. [6 marks]				
	(b)	You are given that a portfolio consists of two assets B and C which are independent. The two assets have the following returns				
		Probability	Asset B	Asset C		
		$\frac{1}{3}$	45	30		
		$\frac{1}{3}$	60	60		
		$\frac{1}{3}$	75	90		
		An investor wants to create a minimum variance portfolio <i>P</i> consisting of these two assets.				
		(ii) If short-sales are allowed find the portfolio P. Compute its mean and variance. [7 marks]				
		 (iii) Sketch the opportunity set formed by these two assets. Mark on your sketch the efficient frontier (short-sales are disallowed). [8 marks] 				

3. (a) Consider four assets with expected return $\mu_1 = 6\%$, $\mu_2 = 7\%$, $\mu_3 = 8\%$ and $\mu_4 = 10\%$ with the following variance – covariance matrix (Units are %%).

10	8	0	15
8	15	0	16
0	0	40	0
15	16	0	35

An investor wants to calculate the minimum variance portfolio for a given expected return E_p . He or she expresses this problem in matrix notation as Ay = b. Write down the matrices A, y and b. [6 marks]

(b) An investor chooses to invest in equities from two counters : Lowland and Highland. Lowland equities have an expected return of 5%, with standard deviation of15%. Highland equities are more risky, their expected return is10%, with standard deviation 25%. The correlation coefficient of the two equity markets is 0.3.

Given that the investor has x invested in low bond shares and 1-x invested in Highland shares, state equations for the expected return and standard deviation for the investor's portfolio. [6 marks]

- 4. (a) Give the definitions for the Capital Line and the Security Market Line. Define all terms you use. [6 marks]
 - (b) Given the expected return on the market is 10% and the risk-free rate of return is 5%. An investor buys stocks of company A and Company B. Stock A has a beta of 0.4 and stock B has a beta of 1.2.
 - (i) What is the interpretation of a shares beta value? [3 marks]
 - (ii) Calculate the weights the investor should hold in stock A and stock B to obtain a portfolio with beta 0.8. [5 marks]
 - (iii) Calculate the expected return on this portfolio. [3 marks]

5. You consider buying shares of company A and of Company B. Your investment decision is based on a two-index model. The return on the stock of A is given by:

 $R_A = 1.0 + 0.0I'_L + 0.5I'_S + C'_A$ and for B by $R_B = 2.0 + 0.8I'_L + 0.0I'_S + C'_B$

where

6.

 I_L^{\prime} denotes the return on an index of large stocks

 I'_{s} denotes the return on an index of small stocks Assume that:

 C_A^{\prime} and C_B^{\prime} are uncorrelated and have zero mean.

 C_i^{\prime} and I_L^{\prime} are uncorrelated, $i \in \{A, B\}$

 C_i^{\prime} and I_s^{\prime} are uncorrelated, $i \in \{A, B\}$

(a) Regression analysis shows that I'_s is related to I'_L via $I'_s = 1.0+1.5 I'_L + d_t$

Where d_t and I'_L are uncorrelated.

Express the returns on the stocks of A and on the stocks of B in a transformed two–index model with orthogonal indices. **[8 marks]**

- (b) Calculate the mean and variance for each stock given the following data: E[I_L] = 8% E[I_s] = 10% σ_L² = 5%% σ_c² = 8%% σ_c² A = 12%% σ_c² B = 10%% Where I_L, I_s denotes the orthogonal indices with variance σ_L² and σ_s² respectively. σ_{ci}² denotes the variance of C_i['], for i∈ {A, B} [5 marks]
 (a) Explain the weak, semi-strong and strong form of the efficient market
- (a) Explain the weak, semi-strong and strong form of the efficient market hypothesis in terms of gambling on horse races. [8 marks]
 (b) Explain your understanding of the following under efficient market hypothesis.

 (i) Momentum investors and contrarians. [4 marks]
 (ii) Fundamental analysis [3 marks]

END OF EXAMINATION