NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

B.COMM (ACTUARIAL SCIENCE) HONOURS DEGREE

FINANCIAL ECONOMICS - CIN 4115

NOVEMBER/DECEMBER 2005 FIRST SEMESTER EXAMINATION

DURATION: 3 HOURS

Instructions To Candidates

1. Attempt ALL questions, beginning each question on a new sheet.
2. For this question paper you are permitted to have an electronic calculator (non programmable)
3. You must not start writing your answers until instructed to do so by the invigilator
4. Mark allocations are shown in brackets
5. Write clearly and show all workings
6. (a) Investment projects A and B have both a rate of return that is normally distributed with expected return μ. The variance of the rate of return of project A is σ_{A}^{2}, the variance of the rate of return of project B is σ_{B}^{2}, with $\sigma_{A}^{2}<\sigma_{B}^{2}$.

Show that:
(i) A does not dominate B with respect to first order stochastic dominance
[4 marks]
(ii) A does not dominate B with respect to third order stochastic dominance.
[5 marks]
(b) A homeowner is considering buying buildings insurance. His current total wealth is $\$ 100000$. Over one year there is a 1% chance of his house suffering \$50 000 of damage, and a 10% chance of suffering \$5000 of damage.
(i) A large insurer sells many thousands of identical policies to homeowners like the one above. What premium should they charge each year if they expect zero profit?
[4 marks]
(ii) The homeowner has a log utility function. What is the maximum price he is willing to pay for this insurance?
(iii) Comment on your answers in (i) and (ii).
[3 marks]
2. (a) An investor uses semi-variance as a measure of dispersion. This is consistent with his choice of utility function:

$$
U(x)=\left\{\begin{array}{lr}
a+b x+c x^{2} & \text { for } x \leq \mu \\
a-c \mu^{2}+(b+2 c \mu) x & \text { for } x>\mu
\end{array}\right.
$$

Under what conditions does this investor have the properties of riskaverseness and non - satiation.
[6 marks]
(b) You are given that a portfolio consists of two assets B and C which are independent. The two assets have the following returns

Probability	Asset B	Asset C
$1 / 3$	45	30
$1 / 3$	60	60
$1 / 3$	75	90

An investor wants to create a minimum variance portfolio P consisting of these two assets.
(ii) If short-sales are allowed find the portfolio P. Compute its mean and variance.
[7 marks]
(iii) Sketch the opportunity set formed by these two assets. Mark on your sketch the efficient frontier (short-sales are disallowed).
[8 marks]
3. (a) Consider four assets with expected return $\mu_{1}=6 \%, \mu_{2}=7 \%, \mu_{3}=8 \%$ and $\mu_{4}=10 \%$ with the following variance - covariance matrix (Units are \%\%).

10	8	0	15
8	15	0	16
0	0	40	0
15	16	0	35

An investor wants to calculate the minimum variance portfolio for a given expected return E_{P}. He or she expresses this problem in matrix notation as $A y=b$. Write down the matrices A, y and b.
[6 marks]
(b) An investor chooses to invest in equities from two counters: Lowland and Highland. Lowland equities have an expected return of 5\%, with standard deviation of15\%. Highland equities are more risky, their expected return is 10%, with standard deviation 25%. The correlation coefficient of the two equity markets is 0.3 .

Given that the investor has x invested in low bond shares and $1-x$ invested in Highland shares, state equations for the expected return and standard deviation for the investor's portfolio.
[6 marks]
4. (a) Give the definitions for the Capital Line and the Security Market Line. Define all terms you use.
[6 marks]
(b) Given the expected return on the market is 10% and the risk-free rate of return is 5%. An investor buys stocks of company A and Company B. Stock A has a beta of 0.4 and stock B has a beta of 1.2.
(i) What is the interpretation of a shares beta value? [3 marks]
(ii) Calculate the weights the investor should hold in stock A and stock B to obtain a portfolio with beta 0.8 .
[5 marks]
(iii) Calculate the expected return on this portfolio. [3 marks]
5. You consider buying shares of company A and of Company B. Your investment
decision is based on a two-index model. The return on the stock of A is given by:
$R_{A}=1.0+0.0 I_{L}^{\prime}+0.5 I_{S}^{\prime}+C_{A}^{\prime}$ and for B by $R_{B}=2.0+0.8 I_{L}^{\prime}+0.0 I_{S}^{\prime}+C_{B}^{\prime}$
where
I_{L}^{\prime} denotes the return on an index of large stocks
I_{S}^{\prime} denotes the return on an index of small stocks
Assume that:
C_{A}^{\prime} and C_{B}^{\prime} are uncorrelated and have zero mean.
C_{i}^{\prime} and I_{L}^{\prime} are uncorrelated, $i \in\{A, B\}$
C_{i}^{\prime} and I_{S}^{\prime} are uncorrelated, $i \in\{A, B\}$
(a) Regression analysis shows that I_{S}^{\prime} is related to I_{L}^{\prime} via
$I_{S}^{\prime}=1.0+1.5 I_{L}^{\prime}+d_{t}$
Where d_{t} and I_{L}^{\prime} are uncorrelated.
Express the returns on the stocks of A and on the stocks of B in a transformed two-index model with orthogonal indices. [8 marks]
(b) Calculate the mean and variance for each stock given the following data:

$$
\begin{aligned}
& E\left[I_{L}\right]=8 \% \\
& E\left[I_{S}\right]=10 \% \\
& \sigma_{L}^{2}=5 \% \% \\
& \sigma_{s}^{2}=8 \% \% \\
& \sigma_{c}^{2} A=12 \% \% \\
& \sigma_{c}^{2} B=10 \% \%
\end{aligned}
$$

Where I_{L}, I_{S} denotes the orthogonal indices with variance σ_{L}^{2} and σ_{S}^{2} respectively. $\sigma_{c i}^{2}$ denotes the variance of C_{i}^{\prime}, for $i \in\{A, B\}$
[5 marks]
6. (a) Explain the weak, semi-strong and strong form of the efficient market hypothesis in terms of gambling on horse races.
[8 marks]
(b) Explain your understanding of the following under efficient market hypothesis.
(i) Momentum investors and contrarians.
[4 marks]
(ii) Fundamental analysis

END OF EXAMINATION

