NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

B. COMM (HONOURS) DEGREE IN ACTUARIAL SCIENCE

INTRODUCTION TO DERIVATIVES – CIN 4215

JUNE 2004 SECOND SEMESTER EXAMINATION

DURATION : 2 HOURS

INSTRUCTIONS TO CANDIDATES

- 1. Answer all questions
- 2. Requirements Scientific calculator

Statistical Tables

- 1. The current price of a stock is \$90 and three-month call options with a strike price of \$87 currently sell for \$4.50. An investor who feels that the price of the stock will rise is trying to decide between buying 100 shares and buying 2000 call options. Both strategies involve an investment of \$9000. Assuming the interest rate is r = 0, what advice would you give? How high does the stock price have to rise for the option strategy to be more profitable. **[6 marks]**
- 2(a) Let π_t denote the value at time *t* of an option with payoff $X = \Psi(S_T)$ at time T, where S_t is assumed to follow the Black-Scholes model. Using arbitrage arguments, this value should be equal to the value V_t^h of its <u>self-financing</u> replicating portfolio h = (x, y) at all times *t* up to and including maturity. Show that under the risk-neutral measure, the rate of return from investing in the option is equal to the risk-free rate. [5 marks]

[Hint : In other words, prove that $\frac{d\pi_t}{\pi_t} = rdt + g_t d\tilde{W}_t$ for some stochastic process g_t]

(b) Hence show that the discounted option price $Z_t = B_t^{-1} \pi_t$ is a Q-martingale. [3 marks]

3. The current price of a stock is \$5. In three months time the price will be \$6 with probability 0.6 or \$4.50 with probability 0.4. The continuously compound risk-free rate of interest is 10% per annum. A call option on the stock has term three months and strike price \$5.50.

(a) Let t = 0 represent today and t = 1 represent three months from now. If

		$B_0 = 1$, what is the value B_1 of the bond after three m appropriate value of r to use in the binomial model.	onths? Deduce the [3 marks]	
	(b)	Derive from first principles an expression for the one-step weights q_u , q_d of an equivalent martingale measure Q. Hence find the value of q_u and q_d and check that the discounted stock price process is a Q-martingale. [6 marks]		
	(c)	 Calculate the arbitrage-free price of this option by: (i) finding the replicating portfolio (ii) using the risk-neutral pricing formula. 	[0 marks] [3 marks] [2 marks]	
	(d)	Now suppose the call option above has a current price Identify an arbitrage opportunity available and clearly that arbitrageurs could use to make free cash (if any) a	show the strategy	
4.		ose that the prices of a riskless bond B_t , and a risky asset ding to the stochastic differential equations (SDEs) $dB_t = rB_t d_t$ $dS_t = \mu S_t d_t + \sigma S_t dW_t$	S _t evolve	
	Where r, μ and σ are positive constants, and W is a standard Brownian motion under the "real world" measure P.			
	(a)	a) Which theorem can you use to find a measure Q, equivalent to P, such that $\tilde{W}_t = W_t + (\frac{\mu - r}{\sigma})t$ is a Brownian motion under Q?		
	Write down and simplisfy an expression for the Radon-Nikodym		n-Nikodym	
		derivative $\frac{dQ}{dP}$.	[5 marks]	
	(b)	Using Itô's Lemma, determine an expression for $d(e^{-r^2})$ that $e^{-rt}S_t$ is a Q-martingale.	S _t) and hence show [3 marks]	
5.	and for quest	ify the factors affecting the Black-Scholes price of a European call option or each factor briefly discuss what happens when the variable (factor) in ion changes slightly (reasons resulting from either the mechanics of the ns or the Black-Scholes formula are acceptable). [8 marks]		

(b) Using the relation in (a) derive the Black-Scholes formula for the price of a European put option with strike price K and time to expiry T.

[5 marks]

{Hint : You can use the fact that (1 - N[d]) = N[-d]}.

- (c) A stock price is currently \$40 and its volatility is estimated at 20%. The risk-free rate of interest is r = 0.12. Find the value of a six-month European put option with strike price \$42 under the Black-Scholes model. [4 marks]
- (c) Derive a formula for the time 0 value C_0 of a Erupean call option with payoff

 $X = max (S_t - K, O)$

Which depends on the strike price K, the value of the stock S_0 at time 0, the risk-free rate of interest r, the volatility σ of the stock and the time to maturity T.

Hint : The density function of an N[0,1] random variable is given by

$$\Phi(Z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2}$$

[9 marks]

END OF EXAMINATION PAPER!!