NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

FACULTY OF INDUSTRIAL TECHNOLOGY
BACHELOR OF ENGINEERING (HONS) DEGREE
Part One Examination February 2010

TCE1101 Chemical Engineering Calculations

Duration of Examination 3 Hours

Instructions to Candidates:

1. Answer ALL FIVE questions.
2. Each question carries equal marks.
3. Show all your steps clearly in your calculation.
4. Start the answers for each question on a new page.
5. a) Phosphoric acid is a colorless deliquescent acid used in the manufacture of fertilizers and as a flavoring agent in drinks. For a given $10 \mathrm{wt} \%$ phosphoric acid solution of specific gravity 1.10 determine:
a. the mol fraction composition of this mixture.
b. the volume (in US gallons) of this solution which would contain $1 \mathrm{~g} \mathrm{~mol} \mathrm{H3PO4}$. (MW H3 $\mathrm{PO}_{4}=97.97$)
b) A U-tube manometer is used to determine the pressure drop across an orifice meter. The liquid flowing in the pipe line is a sulfuric acid solution having a specific gravity $\left(60^{\circ} / 60^{\circ}\right)$ of 1.250 . The manometer liquid is mercury, with a specific gravity $\left(60^{\circ} / 60^{\circ}\right)$ of 13.56 . The manometer reading is 5.35 inches, and all parts of the system are at a temperature of $60^{\circ} \mathrm{F}$.
What is the pressure drop across the orifice meter in psi.
(12 marks)
6. TiCl 4 can be formed by reacting titanium dioxide $(\mathrm{TiO} 2)$ with hydrochloric acid. TiO 2 is available as an ore containing $78 \% \mathrm{TiO} 2$ and 22% inerts. The HCl is available as $45 \mathrm{wt} \%$ solution (the balance is water). The per pass conversion of TiO 2 is 75%. The HCl is fed into the reactor in 20% excess based on the reaction. Pure unreacted TiO 2 is recycled back to mix with the TiO 2 feed.
$\mathrm{TiO} 2+4 \mathrm{HCl} \rightarrow \mathrm{TiCl} 4+2 \mathrm{H} 2 \mathrm{O}$
For 1 kg of TiCl 4 produced, determine:
a) the kg of TiO 2 ore fed.
b) the kg of $45 \mathrm{wt} \% \mathrm{HCl}$ solution fed.
c) the ratio of recycle stream to fresh TiO 2 ore (in kg).
(MW : TiO2 79.9; HCl 36.47 ; TiCl4 189.7)
(20 marks)
7. a) A gas analyzes 60% methane and 40% ethylene by volume. It is desired to store 12.3 kg of this gas mixture in a cylinder having a capacity of $5 \cdot 14 \times 10-2 \mathrm{~m} 3$ at a maximum temperature of $45^{\circ} \mathrm{C}$. Calculate the pressure inside the cylinder by:
(i) assuming that the mixture obeys the ideal gas laws;
(ii) using the compressibility factor determined by the pseudo critical point method.
(15 marks)
b) A cylinder $0.150 \mathrm{~m}^{3}$ in volume containing 22.7 kg of propane $\mathrm{C}_{3} \mathrm{H}_{8}$ stands in the sun. A gauge pressure shows that the pressure is 4790 kPa gauge. What is the temperature of the propane in the cylinder. Use van der Waal's equation of state.
Take: $a=9.24 \times 10^{6} \mathrm{~atm}\left(\frac{\mathrm{~cm}^{3}}{\mathrm{gmol}}\right)^{2}, b=90.7\left(\frac{\mathrm{~cm}^{3}}{\mathrm{gmol}}\right)$
(5 marks)
8. a) A steel tank having a capacity of $25 \mathrm{~m}^{3}$ holds carbon dioxide at $30^{\circ} \mathrm{C}$ and 1.6 atm . Calculate the weight, in grams, of the carbon dioxide.
(7 marks)
b) A stream of hot water at $150^{\circ} \mathrm{F}$ flowing at a rate of 50 US
$\mathrm{gal} / \mathrm{min}$ is to be produced by mixing water at $60^{\circ} \mathrm{F}$ and steam at 30 psia and $280^{\circ} \mathrm{F}$ in a suitable mixer. What are the required flow rates of steam and cold water. Assume Q $=0$.
Take: Steam $30 \mathrm{psia}, 280^{\circ} \mathrm{F}, \Delta \hat{H}=1179 \mathrm{Btu} / \mathrm{lb}$
Water $150^{\circ} \mathrm{F} \Delta \hat{H}=117.87 \mathrm{Btu} / \mathrm{lb}$, water $60^{\circ} \mathrm{F} \Delta \hat{H}=28.07 \mathrm{Btu} / \mathrm{lb}$
(13 marks)
9. Argon gas in an insulated plasma deposition chamber with a volume of 2 L is to be heated by an electric resistance heater. Initially, the gas, which can be treated as an ideal gas, is at 1.5 Pa and 300 K . The 1000 -ohm heater draws current at 40 V for 5 minutes (i.e., 480 J of work is done on the system by its surroundings). What is the final gas temperature and pressure in the chamber? The mass of the heater is 12 g and its heat capacity is $0.35 \mathrm{~J} / \mathrm{gK}$. Assume that the heat transfer through the walls of the chamber from the gas at this low pressure and in the short time period can be considered negligible.

