NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

FACULTY OF INDUSTRIAL TECHNOLOGY BACHELOR OF ENGINEERING (HONS) DEGREE Part One Supplementary Examination 2014

TCE 1202 Materials and Containment 1B

Duration of Examination 3 Hours

Instructions to Candidates

1.	Answer Question One and any other Three questions.
2.	Show all your steps clearly in your calculation.

3. Start the answers for each question on a new page.

solution: Cu²⁺, Co²⁺, Fe²⁺, Fe³⁺, Na⁺, Pb²⁺, Cu⁺.

1.	a) Explain what is meant by 'the free energy of an electrochemical cell.	[4]	
	b) Calculate the pressure (fugacity) of hydrogen required to stop corrosion	of iron	
	immersed in $0.1M$ of FeCl ₂ and pH = 3?	[5]	
	c) Compare and contrast elastomers and thermoplastics.	[10]	
	d) Summarize the differences between direct and indirect costs associated with c	orrosion	
	damage.	[6]	
2.	a) Evaluate the process of microbial corrosion and analyze the extent of damage it results		
	in.	[4]	
	b) Determine the corrosion potential and corrosion rate of zinc in 1M of hydr	ochloric	
	acid. Assume that all the zinc surface acts as cathode, that Tafel slopes are +/-	0.100V,	
	and that the exchange current densities for zinc and for hydrogen are 0.1 and $10^{\text{-4}}$	A/m^2 ?	
		[6]	
	c) Assess the conditions under which activation polarization rate is controlling	and the	
	one where concentration polarization is controlling.	[5]	

d) Arrange the following ions in order of their thermodynamic ease of plating out of a

[6]

	e) Compute the theoretical tendency of nickel to corrode (in volts) in dearated water of				
	$pH = 7$. Assume the corrosion products are H_2 and $Ni(OH)_2$ the solubility product of				
	which is 1.6×10^{-6} .	[4]			
3.	a) Explain the main differences between the ohmic drop in an aqueous environment and				
	the ohmic drop in an electrical conductor.	[5]			
	b) What do you understand by the following terms?				
	i) concentration cells	[1]			
	ii) accelerated low water corrosion	[1]			
	iii) galvanization	[1]			
	iv) anodizing	[1]			
	v) passivation	[1]			
	c) Justify the need for chemical engineers to study corrosion.	[5]			
	d) What are the pros and cons of the use of plastics?	[4]			
	e) What is the best technique for stress corrosion protection? Justify your answer.	[6]			
4.	a) Chemical composition of glass determines the category it falls under. State	the five			
	categories of glass and explain each category in detail?	[10]			
	b) Justify the need to use a separator between the anodic and cathodic half co	ells of a			
	Daniell cell?	[3]			
	c) Fill in the table below				

Rubber	Production method	Weakness	Uses
Polychloprene		Higher resistance to	
		oils	
			Tyres, tubes,
			adhesives
Nitrite rubbers	Copolymerization of		
	cryolonitrite and		
	butadiene		

- d) The ISO 9223 standard indicates that there should be no corrosion at temperature below 0°C. Independent researchers have however proposed to lower the minimum temperature stated in the standard to lower values in order to account for the actual corrosion observed in Nordic climates. Provide a detailed explanation for the observed corrosion at temperatures below the freezing point? [5]
- **5.** a) Define an inhibitor and explain the possible mechanisms that account for their effectiveness?
 - b) Corrosion problems can rarely be attributed to single forms of corrosion. Provide some examples to justify your answer. [5]
 - c) Why would pitting corrosion be much more prone to provoke a catastrophic failure than uniform corrosion generally does? [5]
 - d) Explain why some metals, such as titanium for example, which are relatively easy to oxidize can still be found at the top of a galvanic series in seawater? [5]
 - e) Evaluate the statement that "cold-worked metals are more susceptible to corrosion than non-cold-worked metals"? [5]

END OF EXAM