NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

FACULTY OF INDUSTRIAL TECHNOLOGY BACHELOR OF ENGINEERING (HONS) DEGREE

Part Two Examination May 2011

TCE 2004 Chemical Engineering Thermodynamics

Duration of Examination 3Hours

Instructions to Candidates

1. Answer question ONE and any other THREE questions.
2. Show all your steps clearly in your calculation.
3. Start the answers for each question on a new page.
4. a) Show from first principles that:
(i) $\frac{V}{R T}=\left[\frac{\partial(c / R T)}{\partial F}\right] \quad \tau$
(ii) $\frac{H}{A T}=-T\left[\frac{\partial(G / G T)}{\partial T}\right] \quad P$

$$
\frac{p}{R T}=\left[\frac{\partial(A / R T)}{\partial V}\right] \quad T
$$

(iii)

$$
\begin{equation*}
\frac{U}{R T}=-T\left[\frac{\partial(A / B T)}{\partial T}\right] V \tag{10}
\end{equation*}
$$

(iv)
b) State the equation that gives the general definition of residual properties and give the thermodynamic properties for which it applies?
c) State and explain the advantages and draw backs of using thermodynamic tables? [3]
d) For $\mathrm{H}_{2} \mathrm{O}$ at a temperature of $350^{\circ} \mathrm{C}$ and up to 10000 kPa (100 bar) plot values of f_{i} and ϕ_{i} calculated from data in the steam tables vs. P.?
2. a) Explain the industrial application of thermodynamic properties of fluids giving relevant examples?
b) Superheated steam originally at P_{1} and T_{1} expands through a nozzle to an exhaust pressure P_{2}. Assuming the process is reversible and adiabatic and that equilibrium is
attained, determine the state of the steam at the exit of the nozzle for the following conditions:
i) $P_{1}=1000 \mathrm{kPa}, \mathrm{t}_{1}=260^{\circ} \mathrm{C}$, and $\mathrm{P}_{2}=200 \mathrm{kPa}$
ii) $\mathrm{P}_{1}=150(\mathrm{psia}), \mathrm{t}_{1}=500^{\circ} \mathrm{F}$, and $\mathrm{P}_{2}=30(\mathrm{psia})$
c) The excess enthalpy (heat of mixing) for a liquid mixture of species 1 and 2 at fixed T and P is represented by the equation:
$\mathrm{H}^{\mathrm{E}}=\mathrm{x}_{1} \mathrm{X}_{2}\left(40 \mathrm{x}_{1}+20 \mathrm{x}_{2}\right)$ where H^{E} is in $\mathrm{J} /$ mol. Determine expressions for $\mathrm{H}^{\mathrm{E}}{ }_{1}$ and $\mathrm{H}^{\mathrm{E}}{ }_{2}$ as functions of x_{1}.
d) Outline the differences between a turbine and a compressor?
3. a) For the system 2-propanol (1)/water (2), the following parameter values are recommended for the Wilson equation:

$$
\begin{array}{ll}
\mathrm{a}_{12}=437.98 \mathrm{cal} / \mathrm{mol} & \mathrm{a}_{21}=1238.00 \mathrm{cal} / \mathrm{mol} \\
\mathrm{~V}_{1}=76.92 \mathrm{~cm}^{3} / \mathrm{mol} & \mathrm{~V}_{2}=18.07 \mathrm{~cm}^{3} / \mathrm{mol}
\end{array}
$$

In addition, the following Antoine equations:
$\ln P^{s a t}{ }_{1} /(k P a)=16.6780-\frac{3640.20}{T /(K)-53.54}$
${\ln P^{3 a t}}_{2} /(\mathrm{KPa})=16.2887-\frac{3640.20}{T /(K)-46.13}$
Assuming the validity of $\mathrm{y}_{\mathrm{i}} \mathrm{P}=\mathrm{x}_{\mathrm{i}} \gamma_{\mathrm{i}} \mathrm{P}_{\mathrm{i}}{ }^{\text {sat }} \quad(\mathrm{i}=1,2 \ldots \ldots, \mathrm{~N})$ calculate:
(a) P and $\left\{\mathrm{y}_{\mathrm{i}}\right\}$, for $\mathrm{T}=353.15 \mathrm{~K}$ and $\mathrm{x}_{1}=0.25$
(b) P and $\left\{\mathrm{x}_{\mathrm{i}}\right\}$, for $\mathrm{T}=353.15 \mathrm{~K}$ and $\mathrm{y}_{1}=0.60$
(c) T and $\left\{\mathrm{y}_{\mathrm{i}}\right\}$, for $\mathrm{P}=101.33 \mathrm{~K}$ and $\mathrm{x}_{1}=0.85$
(d) T and $\left\{\mathrm{x}_{\mathrm{i}}\right\}$, for $\mathrm{P}=101.33 \mathrm{~K}$ and $\mathrm{y}_{1}=0.40$
(e) P^{az}, the azeotropic pressure, and $\mathrm{x}_{1}{ }^{\mathrm{az}}=\mathrm{y}_{1}{ }^{\mathrm{az}}$, the azeotropic composition, for $\mathrm{T}=$ 353.15 K .
4. a) State and explain in detail the two idealizations that facilitate the practical applications of equations of balance?
b) With the aid of a diagram illustrate the steps involved in pressure, temperature flash calculations?
c) State the fundamental property relations equations and define each variable stating its units of measurement?
5. a) Calculate the equilibrium constant for vapour-phase hydration of ethylene at 145 and at $145^{\circ} \mathrm{C}$ and $320^{\circ} \mathrm{C}$ using data from heat capacities and property changes of formation?

Data

$$
\int_{T o}^{T} \frac{\Delta c^{\circ} p}{R} d T=-23.121\left(\text { for } T=145^{\circ} \mathrm{C}\right) \text { and }=22.632\left(\text { for } T=320^{\circ} \mathrm{C}\right)
$$

and $\quad \int_{T o}^{T} \frac{\Delta C^{\circ}}{R} \frac{d T}{T}=-0.06924\left(\right.$ for $\left.T=145^{\circ} \mathrm{C}\right)$ and $=0.01731$ (for $T=320^{\circ} \mathrm{C}$)
b) Discuss in brief the use of ejectors in thermodynamics of flow processes?
c) Justify the notion that the Gibbs energy, Helmholtz energy and partition function serve as generating functions for other thermodynamic properties. Include all the relevant equations in your justification?

