NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

FACULTY OF INDUSTRIAL TECHNOLOGY BACHELOR OF ENGINEERING (HONS) DEGREE
Part Two Examination May 2014

TCE 2004 Chemical Engineering Thermodynamics
Duration of Examination 3 Hours

Instructions to Candidates

1. Answer Question One and any other Three questions.
2. Show all your steps clearly in your calculation.
3. Start the answers for each question on a new page.
4. a) Estimate V, U, H and S for 1-butene vapour at $200^{\circ} \mathrm{C}$ and 70 bar if H and S are set equal to zero for saturated liquid at $0^{\circ} \mathrm{C}$. Assume that the only data available are :
$\begin{array}{llcc}\mathrm{T}_{\mathrm{c}}=420 \mathrm{~K} & \mathrm{P}_{\mathrm{c}}=40.43 \mathrm{bar} & \omega=0.191 & \mathrm{~T}_{\mathrm{n}}=266.9 \mathrm{~K} \\ \mathrm{Cp}^{\mathrm{i}} / \mathrm{R}=1.967+31.630 \times 10^{-3} \mathrm{~T}-9.837 \times 10^{-6} \mathrm{~T}^{2} & \end{array}$
b) Consider the steady-state adiabatic, irreversible flow of an incompressible liquid in a horizontal pipe of constant cross-sectional area. Show that:
i) the velocity is constant
ii) the temperature increases with direction of flow
c) Explain how flow in pipes differs from that in nozzles clearly, showing which case is more advantageous and why?
5. a) Discuss the practical applications of exact differentials and partial derivatives in the study of thermodynamic properties of fluids.
b) A $1.5 \mathrm{~m}^{3}$ tank contains 500 kg of liquid water in equilibrium with pure water vapour, which fills the remainder of the tank. The temperature and pressure are $100^{\circ} \mathrm{C}$ and 101.33 kPa . From a water line at constant temperature of $70^{\circ} \mathrm{C}$ and a constant pressure of somewhat above $101.33 \mathrm{kPa}, 750 \mathrm{~kg}$ of liquid is bled into the tank. If the temperature and Page $\mathbf{1}$ of $\mathbf{3}$
pressure in the tank do not change as a result of the process, how much energy, as heat, must be transferred to the tank?
c) Analyse the two main reasons for inaccuracy in the calculation of thermodynamic properties for the construction of a table or diagram.
d) With the aid of equations define fugacity outlining its importance and how it differs for an ideal gas mixture, ideal solution of gas and real gas mixture.
6. a) Compare and contrast excess properties and residual properties in the study of thermodynamic properties of fluids.
b) Show from first principles that:
(i) $\frac{V}{K Y^{\prime}}=\left[\frac{\partial(G / R T)}{\partial V^{\prime}}\right] \quad T$
(ii) $\frac{B}{R T}=-T\left[\frac{\partial(d / R T)}{\partial T}\right] \quad P$
c) State the fundamental property relation equations.
d) A high velocity nozzle is designed to operate with steam at 700 kPa and $300^{\circ} \mathrm{C}$. At the nozzle inlet velocity is $30 \mathrm{~m} / \mathrm{s}$. Calculate values of the ratio $\mathrm{A} / \mathrm{A}_{1}$ (where A_{1} is the crosssectional area of the nozzle inlet) for the section where pressure is 600,500 and 400 kPa . Assume that the nozzle operates isentropically.
7. a) Determine the enthalpy and entropy changes of liquid water for a change of state from 1 bar and $25^{\circ} \mathrm{C}$ to 1000 bar and $50^{\circ} \mathrm{C}$. The following data for water are available.
[10]

$\mathrm{T} /{ }^{\circ} \mathrm{C}$	$\mathrm{P} / \mathrm{bar}$	$\mathrm{C}_{\mathrm{p}} / \mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$	$\mathrm{~V} / \mathrm{cm}^{3} \mathrm{~mol}^{-1}$	β / K^{-1}
25	1	75.305	18.071	256×10^{-6}
25	1000		18.012	366×10^{-6}
50	1	75.314	18.234	458×10^{-6}
50	1000		18.174	568×10^{-6}

b) State and explain the advantages and draw backs of using thermodynamic tables.[5]
c) Using data from steam tables:
(i) Determine the numerical values of G^{L} and G^{v} for saturated liquid and vapour at 1000 kPa .
(ii) Determine the numerical values of $\Delta \mathrm{H}^{\mathrm{lv}} / \mathrm{T}$ and $\Delta \mathrm{S}^{\text {lv }}$ at 1000 kPa .
5. a) Water at $45^{\circ} \mathrm{C}$ and 10 kPa enters an adiabatic pump and is discharged at a pressure of 8600 kPa . Assume the pump efficiency to be 0.75 . Calculate the work of the pump, the temperature change of the water, and the entropy change of the water.

Data (saturated liquid water at $45^{\circ} \mathrm{C}$)
$\mathrm{V}=1010 \mathrm{~cm}^{3} / \mathrm{kg} \quad \beta=425 \times 10^{-6} \quad \mathrm{C}_{\mathrm{p}}=4.178 \mathrm{~kJ} / \mathrm{kgK}$
b) Some expressions for $\mathrm{G}^{\mathrm{E}} / \mathrm{RT}$ are incapable of representing LLE. An example is the Wilson equation:

$$
\begin{equation*}
\mathrm{G}^{\mathrm{E}} / \mathrm{RT}=-\mathrm{x}_{1} \ln \left(\mathrm{x}_{1}+\mathrm{x}_{2} \Lambda_{12}\right)-\mathrm{x}_{2} \ln \left(\mathrm{x}_{2}+\mathrm{x}_{1} \Lambda_{21}\right) \tag{5}
\end{equation*}
$$

Show that the stability criteria are satisfied for all values of $\Lambda_{12}, \Lambda_{21}$ and x_{1}.
c) Define the tem partial molar property and clearly show its application in the practical field of chemical engineering.
d) Justify the notion that the Gibbs energy, Helmholtz energy and partition function serve as generating functions for other thermodynamic properties. Include all the relevant equations in your justification.

END OF EXAM

