NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

FACULTY OF INDUSTRIAL TECHNOLOGY BACHELOR OF ENGINEERING (HONS) DEGREE Part Two Examination August 2009

TCE 2008 Chemical Reaction Engineering I

Duration of Examination 3 Hours

Instructions to Candidates:

- 1. Answer ALL FIVE questions.
- 2. Each question carries equal marks.
- 3. Show all your steps clearly in your calculation.
- 4. Start the answers for each question on a new page.
- Consider the liquid phase reaction A→ Products Which is to take place in a PFR. The following data was obtained a batch reactor

$-r_{\star}$ (mol/dm ³ s) 0.01 0.008 0.002	Х	0	0.4	0.8
¹ A (mol/dm 5) 0.01 0.000 0.002	$-r_{\rm A}$ (mol/dm ³ s)	0.01	0.008	0.002

If the molar feed of A to the PFR is 2 moles, what PFR volume is necessary to achieve 80 % conversion under identical conditions as those under which the batch data was obtained? (20 marks)

2. A mixture of 28% SO₂ and 72% air is charged to a flow reactor in which SO₂ is oxidized.

$$2SO_2 + O_2 \rightarrow 2SO_3$$

Set up a stoichiometric table to determine the concentrations of each of the reacting species and write the rate of reaction solely as a function of conversion. Assume the reaction is elementary with $k = 200 \text{ dm}^3/\text{mol s}$. Total pressure is 1485 kPa and the temperature is constant at 227°C. (20 marks)

3. The elementary isomerization

is carried out at 20atm in a fluidized CSTR containing 100 kg of catalyst where 50% conversion is achieved. It is proposed to replace the CSTR with a PBR. The entering pressure was 20atm and the exit pressure was found to be 10atm.

- a. What would be the conversion if no pressure drop?
- b. What would be the conversion in the new PBR with pressure drop?

(20 marks)

4. In order to study the photochemical decay of aqueous bromine in bright sunlight, a small quantity of liquid bromine was dissolved in water contained in a glass battery jar and placed in direct sunlight. The follow3ing data were obtained:

Time (min)	10	20	30	40	50	60
Br ₂ ppm	2.45	1.74	1.23	0.88	0.62	0.44

Determine whether the reaction rate is zero-, first-, or second-order in bromine, and calculate the reaction rate constant. (20 marks)

5. a) The reactions:

A+2B→2C 2C+1/2B→ 3D are elementary. Write the net rates of formation for A, B, C and D. $k_{1A} = 0.1 (dm^3/mol)^2/min, k_{2D} = 2(dm^3/mol)^{3/2}/min$

(15 marks)

b) The following reactions were found to occur while trying to make a desired product B

$$\begin{array}{ccc} A \rightarrow B & -r_{A1} = k_{1A} C^2_A \\ A \rightarrow X & -r_{A2} = k_{2A} C_A \\ A + X \rightarrow Y & -r_{A3} = k_{3A} C_A C_X \end{array}$$

Species X and Y are both foul pollutants

What is the instantaneous selectivity of B with respect to the foul pollutants X and Y? *Additional Information*

 $k_{1A} = 0.5 e^{-10,000/T} min^{-1}$, T in degrees Kelvin $k_{2A} = 50 e^{-20,000/T} min^{-1}$, T in degrees Kelvin $k_{3A} = 100 e^{-5,000/T} min^{-1}$, T in degrees Kelvin

(5 marks)