NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY
 FACULTY OF INDUSTRIAL TECHNOLOGY
 DEPARTMENT OF CHEMICAL ENGINEERING
 BACHELOR OF ENGINEERING (HONS) DEGREE

Part II Examination
2013

TCE 2101 Transport Phenomena (Supplementary)

Duration of Examination: 3 Hours

Instructions to candidates:

Answer ALL questions and each question carries 25marks
Answer each question on a FRESH PAGE

Write CLEARLY

QUESTION 1

A. Explain four (4) methods of evaluating convective mass transfer coefficient.
[8].
B. Determine the diffusivity of $\mathrm{CO}_{2}(1), \mathrm{O}_{2}(2)$ and $\mathrm{N}_{2}(3)$ in a gas mixture having the composition: $\mathrm{CO}_{2}: 28.5 \%, \mathrm{O}_{2}: 15 \%, \mathrm{~N}_{2}: 56.5 \%$. The gas mixture is at 273 K and $1.2 \times 10^{5} \mathrm{~Pa}$. The binary diffusivity values are given as:(at 273 K)
$\mathrm{D}_{1-2} \mathrm{P}=1.874 \mathrm{~m}^{2} \mathrm{~Pa} / \mathrm{sec}$
$\mathrm{D}_{1-3} \mathrm{P}=1.945 \mathrm{~m}^{2} \mathrm{~Pa} / \mathrm{sec}$
$\mathrm{D}_{2-3} \mathrm{P}=1.834 \mathrm{~m}^{2} \mathrm{~Pa} / \mathrm{sec}$
$D_{1-\text { mixtur }}=\frac{1}{\frac{y_{2}^{t}}{D_{1-2}}+\frac{y_{3}^{\prime}}{D_{1-3}}+\cdots+\frac{y_{n}^{t}}{D_{1-n}}} ; y_{2}^{t}=\frac{y_{2}}{y_{2}+y_{3}+\cdots+y_{n}}$
[17].

QUESTION 2

A. Determine the diffusivity of N_{2} through the gas mixture having the following composition by volume:
$\mathrm{N}_{2}=67 \% ; \mathrm{CO}_{2}=16 \% ; \mathrm{CO}=11 \% ; \mathrm{O}_{2}=6 \%$ at 273 K and 1.5 atm .
[10].
Given: $\mathrm{D}_{\mathrm{N} 2-\mathrm{O} 2}=18.1 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$ at 273 K and 1 atm

$$
\mathrm{D}_{\mathrm{N} 2-\mathrm{CO}}=19.2 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s} \text { at } 288 \mathrm{~K} \text { and } 1 \mathrm{~atm}
$$

$$
\mathrm{D}_{\mathrm{N} 2-\mathrm{CO} 2}=15.8 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s} \text { at } 298 \mathrm{~K} \text { and } 1 \mathrm{~atm}
$$

$$
\frac{D_{A B, T 1}}{D_{A B, T 2}}=\left(\frac{T_{1}}{T_{2}}\right)^{3 / 2}\left(\frac{P_{2}}{P_{1}}\right)
$$

B. Oxygen is diffusing in a mixture of oxygen-nitrogen at 1 std atm and $25^{\circ} \mathrm{C}$. Concentration of oxygen at planes 2 mm apart are 10 and 20 volume $\%$ respectively. Nitrogen is non-diffusing.
i) Derive the appropriate expression to calculate the flux of oxygen. Define units of each term clearly. [12].
ii) Calculate the flux of oxygen. [3].
Diffusivity of oxygen in nitrogen $=1.89 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{sec}$.

QUESTION 3

A. Under steady-state conditions, O_{2} is diffusing through non-diffusing CO at 273 K and under total pressure of $101.3 \mathrm{kN} / \mathrm{m}^{2}$. The partial pressure of O_{2} at two planes 2 mm apart is $13.5 \mathrm{kN} / \mathrm{m}^{2}$ and $6.5 \mathrm{kN} / \mathrm{m}^{2}$. If the diffusivity for the mixture is $1.85 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$, determine the rate of diffusion of O_{2} through one square meter of the two planes. $\mathrm{R}=8.314 \mathrm{kN} . \mathrm{m} / \mathrm{kmol} . \mathrm{K}$
[8].
B. E.M. Larson using an Arnold cell measured the diffusivity of chloroform in air at $25^{\circ} \mathrm{C}$ and 1 atm pressure. The liquid density of chloroform at $25^{\circ} \mathrm{C}$ is $1.375 \mathrm{~g} / \mathrm{cm}^{3}$ and its vapour pressure at $25^{\circ} \mathrm{C}$ is 250 mmHg . At time $\mathrm{t}=0$, the liquid chloroform surface was 6.55 cm from the top of the tube and after 8.5 hrs the liquid surface had dropped to 0.33 cm . If the concentration of
chloroform is zero at the top of the tube, what would be the gas diffusion coefficient of chloroform in air? Molecular weight of chloroform is 119.39, 1 gmole of gas occupies $22400 \mathrm{~cm}^{3}$ at 1 atm and 273 K . Give your answer in $\mathrm{m}^{2} / \mathrm{s}$. Use a sketch diagram to answer the question.
[17].

QUESTION 4

A. A fluidized coal fired boiler operates at 1150 K . The combustion is preceded by a diffusion process whereby O_{2} diffuses to the coal particle surface and CO formed diffuses back in a counter-flow mechanism. Assume that coal is pure carbon of density $1280 \mathrm{~kg} / \mathrm{m}^{3}$ and that the particle is spherical with an initial diameter of 0.15 mm . determine the time required to reduce the diameter of carbon to 0.05 mm . Combustion air contains $21 \mathrm{~mol} \%_{2}$ and $79 \% \mathrm{~mol} \mathrm{~N}_{2}$. $\mathrm{D}_{\text {O2-gas mixture }}$ at operation temperature $=1.35 \times 10^{-4} \mathrm{~m}^{2} / \mathrm{s}$.
Reaction: $2 \mathrm{C}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}$

$$
W_{Q 2}=4 \pi C r D \ln \left(\frac{1}{1.21}\right)
$$

$\mathrm{r}=$ radius of coal particle; $\mathrm{D}=$ diffusivity of O_{2} in the gas film enveloping the coal particles.
[15].
B. Desorption of a component A from an aqueous solution into an air stream is taking place in a mass transfer tower at a certain operating temperature and pressure. At a particular point in the tower, analysis report reveals: $\mathrm{P}_{\mathrm{A}, \mathrm{G}}=12 \mathrm{mmHg} ; \mathrm{C}_{\mathrm{A}, \mathrm{L}}=4 \mathrm{kmol} / \mathrm{m}^{3} ; \mathrm{K}_{\mathrm{G}}=0.269 \mathrm{kmol} \mathrm{A} /\left(\mathrm{h} . \mathrm{m}^{2} . \mathrm{atm}\right)$ If Henry's law is satisfied by the system and is 56% of the total mass transfer resistance is encountered in the gas film, calculate:
i) Gas - film coefficient, k_{G}
[3].
ii) Liquid-film coefficient, k_{L}
iii) Molar flux N_{A}
$\mathrm{H}=7.5 \times 10^{-3} \mathrm{~atm} /\left(\mathrm{mol} \mathrm{a} / \mathrm{m}^{3}\right.$. sol $)$

