NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

FACULTY OF INDUSTRIAL TECHNOLOGY BACHELOR OF ENGINEERING (HONS) DEGREE
Part Two Examination December 2013

TCE 2104 Chemical Engineering Thermodynamics 1A

Duration of Examination 3 Hours

Instructions to Candidates

1. Answer Question One and any other Three questions.
2. Show all your steps clearly in your calculation.
3. Start the answers for each question on a new page.
4. a) With the aid of a relevant example illustrate how the Gibbs free energy depends on temperature and pressure?
b) A $1.5 \mathrm{~m}^{3}$ tank contains 520 kg of liquid water in equilibrium with pure water vapour, which fills the remainder of the tank. The temperature and pressure are $100^{\circ} \mathrm{C}$ and 101.33 kPa . From a water line at constant temperature of $70^{\circ} \mathrm{C}$ and a constant pressure of somewhat above $101.33 \mathrm{kPa}, 760 \mathrm{~kg}$ of liquid is bled into the tank. If the temperature and pressure in the tank are not to change as a result of the process, how much energy as heat must be transferred to the tank?
c) Discuss the practical applications of exact differentials and partial derivatives in the study of thermodynamic properties of fluids?
d) Analyse the two main reasons for inaccuracy in the calculation of thermodynamic properties for the construction of a table or diagram?
5. a) Justify the notion that chemical potentials are more suitable than thermodynamic fugacities or activities to define environmentally determined potentials?
b) Derive the Maxwell relation equations and explain their practical applications?[8]
c) Find the values of the residual enthalpy H^{R} and the residual entropy S^{R} for n-butane gas at 500 K and 50 bar as given by the Redlich/Kwong equation?

Data : $\Omega=0.08664 \quad \psi=0.42748 \quad \alpha \mathrm{~T}_{\mathrm{r}}=\mathrm{T}_{\mathrm{r}}^{1 / 2}$
3. a) Explain how flow in pipes differs from that in nozzles clearly showing which case is more advantageous and why?
b) In a steady-state flow process, $1 \mathrm{~mol} / \mathrm{s}$ of air at 600 K and 1 atm is continuously mixed with $2 \mathrm{~mol} / \mathrm{s}$ of air at 450 K and 1 atm . The product stream is at 400 K and 1 atm . Determine the rate of heat transfer and the rate of entropy generation for the process? Assume that air is an ideal gas with $\mathrm{C}_{\mathrm{p}}=(7 / 2) \mathrm{R}$, that the surroundings are at 300 K , and that kinetic and potential energy changes are negligible.
c) State the equation for the partial molar volume and explain its physical interpretation?
d) Gas is compressed in a reciprocating compressor from 1 bar to 6 bar. The free air delivery (FAD) is $13 \mathrm{dm}^{3}$. The clearance ratio is 0.05 . The expansion part of the cycle follows the law $\mathrm{pV}^{1.2}=\mathrm{C}$. The crank speed is $360 \mathrm{rev} / \mathrm{min}$. Calculate the swept volume and the volumetric efficiency?
4. a) Superheated steam originally at P_{1} and T_{1} expands through a nozzle to an exhaust pressure P_{2}. Assuming that the process is reversible and adiabatic and that equilibrium is attained, determine the state of the steam at the exit of the nozzle for the following conditions: $\mathrm{P}_{1}=1000 \mathrm{kPa}, \mathrm{T}_{1}=275^{\circ} \mathrm{C}$ and 200 kPa .
b) Derive the continuity equation and illustrate two of its applications?
c) With the aid of equations define fugacity outlining its importance and how it differs for an ideal gas mixture, ideal solution of gas and real gas mixture.
d) A rigid tank contains 1 kg of N_{2} initially at 300 K and 1 atm . Energy is added to the gas until a final temperature of 600 K is reached. Calculate the entropy change of the N_{2} associated with this heating process?
Data: $c_{p} @ 300 \mathrm{~K}=29.075 \mathrm{~kJ} / \mathrm{kmol} . \mathrm{K}$
$\mathrm{c}_{\mathrm{p}} @ 600 \mathrm{~K}=30.086 \mathrm{~kJ} / \mathrm{kmol} . \mathrm{K}$
5. a) Determine the fugacity, in bars, for $\mathrm{C}_{2} \mathrm{~F}_{4} \mathrm{H}_{2}$ for a Redlich-Kwong gas at $90^{\circ} \mathrm{C}$ and 10 bar?

Data : $\mathrm{T}_{\mathrm{c}}=374.3 \mathrm{~K} \quad \mathrm{P}_{\mathrm{c}}=40.6$ bar $\quad v=2.724 \mathrm{~m}^{3} / \mathrm{kg}$
b) Water at $45^{\circ} \mathrm{C}$ and 10 kPa enters an adiabatic pump and is discharged at a pressure of 8600 kPa . Assume the pump efficiency to be 0.75 . Calculate the work of the pump, the temperature change of the water, and the entropy change of the water.

Data (saturated liquid water at $45^{\circ} \mathrm{C}$)
$\mathrm{V}=1010 \mathrm{~cm}^{3} / \mathrm{kg}$
$\beta=425 \times 10^{-6}$
$\mathrm{C}_{\mathrm{p}}=4.178 \mathrm{~kJ} / \mathrm{kgK}$
c) Compare and contrast excess properties and residual properties in the study of thermodynamic properties of fluids?
d) Discuss the two idealizations that facilitate the practical application of equations of balance?

