NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY
 FACULTY OF INDUSTRIAL TECHNOLOGY
 BACHELOR OF ENGINEERING (HONS) DEGREE

Part Three Examination June 2010

TCE3005 Fluid-Solid Systems

Duration of Examination 3Hours

Instructions to Candidates

1. Answer any FOUR questions.
2. Show all your steps clearly in your calculation.
3. Start the answers for each question on a new page.
4. a) State any five important characteristics of a particle.
b) What do you understand by the following terms?
i) free-falling diameter
ii) skin friction drag
iii) surface-volume diameter
iv) minimum fluidization velocity
v) projection sphericity
c) With the aid of a diagram, explain the effects of decreasing the gas superficial velocity on the pressure drop per unit length of pipeline for a vertical pneumatic transport system of initial solids feed-rate G.
d) State and explain five factors taken into consideration in the selection of a dust collector.
5. a) What is hindered settling?
b) Describe the four transport states that may occur in horizontal pipelines when pneumatically conveying solids.
c) Show that in the range $0.1<\operatorname{Re}_{\mathrm{t}}<750$, a particle at its terminal velocity satisfies the relationship below:
$C_{D} \operatorname{Re}_{t}{ }^{2}=\frac{4 \rho_{f}\left(\rho_{p}-\rho_{f}\right) g d_{p}{ }^{3}}{3 \mu^{2}}$
6. a) Briefly describe the operation of the following equipment:
i) An impactor
ii) A coulter-counter particle sizer
iii) A cyclone
b) Two particles A and B of diameters d_{A} and d_{B} are falling freely under gravity in a liquid of density ρ_{f}. Show that if Newton's law applies, the particles' terminal velocities are equal if:

$$
\begin{equation*}
\frac{d_{A}}{d_{B}}=\frac{\rho_{A}-\rho_{f}}{\rho_{B}=\rho_{f}} \tag{5}
\end{equation*}
$$

c) It is desired to separate a mixture of quartz and galena of a size range from 0.015 mm to 0.065 mm into two pure fractions by the use of a hindered settling process. What is the minimum apparent density of the fluid that will give this separation?
4. a) State four particulate solids that can be transported by pneumatic conveying.
b) A bed consists of uniform spherical particles of diameter 3 mm and density $4200 \mathrm{~kg} / \mathrm{m}^{3}$. What will be the minimum fluidizing velocity in a liquid of viscosity $3 \mathrm{mNs} / \mathrm{m}^{2}$ and density $1100 \mathrm{~kg} / \mathrm{m}^{3}$ if $\operatorname{Re}_{m f}=25.7\left\lfloor\sqrt{1+5.53 * 10^{-5} G a}-1\right\rfloor$ when $\varepsilon_{\mathrm{mf}}=0.4$.
c) Derive from first principles, the terminal falling velocity of a particle of density ρ_{p} in a fluid of density ρ_{f} and viscosity μ. Assume the particle motion is under gravity in the Stokes region.
5. a) Describe the fluidization behavior of the four classes of particulates according to Geldart's classification citing examples of real materials that fall within those classes. [8]
b) State and explain five methods employed in filter cleaning.
c) Using diagrams, briefly explain the mechanisms of particle capture in gas cleaning.

END OF EXAM

