NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF CIVIL AND WATER ENGINEERING FACULTY OF INDUSTRIAL TECHNOLOGY BACHELOR OF ENGINEERING (HONOURS) DEGREE PART II FIRST SEMESTER EXAMINATIONS- MAY-2009 ENGINEERING SURVEY I -TCW 2102

INSTRUCTIONS
Answer any four questions
Time : 3hours
Total marks : 100

QUESTION 1

A base line PR was measured in two sections with a tape and the field data recorded are as follows :

Line	Length (m)	Slope angle	Temperature Tension	Catenary	
PQ	99,895	$+2^{0}$	$25^{0} \mathrm{c}$	51 N	3 equal bays
QR	31,115	$+1^{0} 50$	$26^{\circ} \mathrm{c}$	50 N	1 bay

Other Data

Radius of the earth	$=$	6361 km
Coefficient of linear expansion	$=$	$0,0000112 /^{\circ} \mathrm{c}$
Elevation (height)	$=$	1500 m
Standard temperature	$=$	$22^{0} \mathrm{c}$
Standard tension	$=$	50 N
Cross-sectional area of tape	$=$	$0,17 \mathrm{~kg} / \mathrm{m}$
Mass of tape	$=$	$200 \mathrm{kN} / \mathrm{m}^{2}$

Calculate the mean sea level distance PR.

QUESTION 2

(a) Fig.2a shows a cross-sectional area for an embankment on a road site which has got the following measurements :
Formation width $=16 \mathrm{~m}$
Formation height $=4 \mathrm{~m}$
Side slope $=1: 2$
Ground slope $\quad=\quad 1: 12$

Calculate the cross-sectional area for this embankment.
(10 marks)
(b) A road is to be constructed on a hillside section as shown in fig. 2 b Given the following road parameters :
Road width $=20 \mathrm{~m}$
Existing ground slope $=1$ in 5
Side slope in cut $=1$ in 1
Centre height in cut $=1 \mathrm{~m}$
Side slope in fill $\quad=1$ in 2
Calculate the cross-sectional areas of cut and fill.
(10 marks)
© Given the following information :
Horizontal distance intervals(m):0, 50, 100 150 , 200
Reduced levels (m) $500, ~ 450, ~ 550$, 575 and 600
Draw a longitudinal profile.
(5marks)

QUESTION 3

(a) Define the following terms : bench mark, datum , change point and horizontal line.
(5marks)
(b) Fig. 3b shows the longitudinal section for a straight length of a proposed road and a series of six cross-sections taken at right angles to the proposed centerline at 50 m horizontal distance intervals. Calculate the total volumes of cut and fill required between the first and last cross-sections.
(20 marks)
(25 marks)

QUESTION 4

A building site is to be excavated on a hill sloping at 10^{0} to the horizontal. If the horizontal base of the site is tobe 40 m by 40 m and the sides of the excavation are to slope at 1 m vertical to $1,5 \mathrm{~m}$ horizontal as shown in fig. 4 , calculate the volume of earth to be excavated.
(20 marks)
(b) A planimeter is traced over a circle of radius 8 cm and the difference in readings obtained was 6,324 revolutions. At the same setting the planimeter was used to measure an area on a plan drawn to a scale of 1:200 and gave a reading of 8,713 revolutions. Calculate this area.
(5 marks)
(25 marks)

QUESTION 5

(a) The following sets of readings were taken to test an automatic level

Set 1

Level set up midway between two pegs A and B, 60m apart horizontally.
Reading on the staff when held vertically at $\mathrm{A}=1,608 \mathrm{~m}$
Reading on the staff when held vertically at $B=1,484 \mathrm{~m}$
Set 2
Level set up on the line $A B$ extended, 6 m from B horizontally.
Reading on the staff when held vertically at $\mathrm{A}=1,455 \mathrm{~m}$
Reading on the staff when held vertically at $\mathrm{B}=1,371 \mathrm{~m}$
Calculate the collimation error in the level per 60 m of sight.
(20 marks)
(b) Comment on the error .
(5 marks)
(25 marks)

QUESTION 6

The following levels were taken over a stretch of ground where it is required to excavate a trench, 1,1 metres wide with vertival sides for carrying a pipe at a downgrade of $1: 50$ from A to F . The bottom of the pipe is to be 1,7 metres vertically below A.Reduced elevation of A is $1300,000 \mathrm{~m}$ and 1 cubic metre of water $=1000$ litres.

Station A	Distancefrom A	$\begin{aligned} & \text { B.S. } \\ & 3,094 \end{aligned}$	I.S.	F.S
B	15 m		2,194	
C	37 m		1,524	
D	56m	0,640		0,381
E	67 m		1,143	
F	76 m			2,652

Reduce the levels using the rise and fall method Calculate
(i) the volume of of the excavation in cubic metres.
(ii) Assuming that a pipe of 0,762 metres internal diameter is laid in the trench and that the depth of water in the pipe is 0,558 metres with a linear velocity of 15 metres per minute, calculate the flow in litres per hour.

List of formulae

$$
\begin{aligned}
& \mathrm{A}=\frac{\mathrm{X} . \mathrm{Y}^{2} \cdot \mathrm{Z}}{100^{2}} \\
& A=(b-s h) \\
& \text { 2(s-n) } \\
& \mathrm{A}=\frac{(\mathrm{b}+\mathrm{mh})}{2(\mathrm{~s}-\mathrm{m})} \\
& \mathrm{W}_{1}=\mathrm{s}(\mathrm{~b}-\mathrm{nh}) \\
& \mathrm{W}_{2}=\mathrm{s} \underline{(\mathrm{~b}+\mathrm{mh})} \\
& \text { s-n } \\
& \text { s-m } \\
& \mathrm{V}=\mathrm{h} / 3(\mathrm{~A}+2 \mathrm{O}+4 \mathrm{E}), \quad \mathrm{V}=\mathrm{h} / 2[\mathrm{~A} 1+\mathrm{An}+2(\mathrm{~A} 2+\mathrm{A} 3+\ldots \ldots . \mathrm{AN}-1)]
\end{aligned}
$$

$$
\begin{aligned}
& C_{s}=\frac{L\left(l^{\prime}-1\right)}{l} \quad, C_{t}=L_{m}\left(t_{f}-t_{s}\right) \alpha, C_{c}=\frac{(m g)^{2} L^{3}}{24 T^{2}}, C_{m}=\frac{\mathrm{L}_{\underline{m}} \mathrm{~h}}{\mathrm{R}+\mathrm{h}} \\
& \mathrm{~V}=1 / 6(\mathrm{a}+\mathrm{b}+\mathrm{c}) .1 . \mathrm{h} \quad, \quad \mathrm{C}_{\mathrm{T}}=\mathrm{T}_{\mathrm{f}}-\mathrm{T}_{\underline{s}} \\
& \text { AxE }
\end{aligned}
$$

