NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY
 DEAPARTMENT OF CIVIL AND WATER ENGINEERING
 FACULTY OF INDUSTRIAL TECHNOLOGY
 BACHELOR OF ENGINEERING (HONOURS) DEGREE
 PART I SECOND SEMESTER EXAMINATIONS - JUNE 2010
 ENGINEERING MECHANICS II: KINEMATICS \& DYNAMICS - TCW 1201

INSTRUCTIONS

Answer any five (5) questions
Time: 3 hours
Total Marks: 100

QUESTION I

The velocity of a particle moving along the x -axis is given as a function of time; the position is given at some instant as follows:

$$
\begin{aligned}
& v(t)=60 \mathrm{t}-20 \mathrm{~m} / \mathrm{s} \\
& \text { At } \mathrm{t}=0, x(\mathrm{o})=20 \mathrm{~m}
\end{aligned}
$$

(a) Determine the position of the particle as a function of time.
(b) Determine the acceleration of the particle as a function of time.
© Evaluate the:
(i) position,
[2 marks]
(ii) velocity, and [2 marks]
(iii) acceleration of the particle at $t=8 \mathrm{~s}$.
[2 marks]
(d) Determine the total distance traveled by the particle between time $t=8 \mathrm{~s}$ and time $t=12 \mathrm{~s}$.
[4 marks]
(e) Sketch displacement $x(t)$, the velocity $v(t)$, and the acceleration $a(t)$ for the interval $0 \leq t \leq 10 s$.

QUESTION 2

Two race cars start from rest at the same time. Acceleration of car A is given by $30 e^{-t / 5} \mathrm{~m} / \mathrm{s}^{2}$ and that of car B is given by $20 e^{-t / 5} \mathrm{~m} / \mathrm{s}^{2}$.
(a) Determine the distance at which car B overtakes car A .
[10 marks]
(b) Also determine their relative velocity at that time.
[10 marks]

QUESTION 3

(a) Write short notes on the collision of elastic bodies.

The bars shown in figure Q3 are sliding freely on a horizontal rod. For the conditions specified in table Q3, determine:
(b) The final velocity of both beads.
[8 marks]
© The percentage of the initial kinetic energy lost as a result of the collision of the two bars. e is the coefficient of restitution.
[6 marks]
Table Q3

$\mathbf{m A}$	$\mathbf{v A}$	$\mathbf{m B}$	$\mathbf{v B}$	e
10 kg	$5 \mathrm{~m} / \mathrm{s}$	$\mathbf{6 k g}$	$2 \mathrm{~m} / \mathrm{s}$	$\mathbf{0 . 3}$

Figure Q3

QUESTION 4

A10kg projectile is fired horizontally with an initial velocity of $100 \mathrm{~m} / \mathrm{s}$ from the top of a hill, which is 100 m above the surrounding area.
(a)Determine the range R of the projectile (horizontal distance
(b) The elapsed time before it strikes the ground. Air resistance is negligible.
[10 marks]

QUESTION 5

(a) Mention five characteristics of dry friction.
(b) Briefly explain the three types of friction problems
(c) Distinguish between the coefficient of static friction and the coefficient of kinetic friction.
[4 marks]
(d) A 30 kg mass is pulled along a flat surface at a constant speed by a cable tension T at an angle of 40° in relation to the horizontal direction as shown in figure Q 5 below. The coefficient of kinetic friction between the surface and the mass varies from $\mu_{\mathrm{k}}=0.20$ to 0.35 . Determine the range of values of the magnitude of this tension T .

QUESTION 6

From all the topics covered, explain why engineers should study mechanics with a special emphasis to dynamics.
[20 marks]

QUESTION 7

(a) Derive an expression for the parallel axis theorem of an area.
(b) Determine the centroidal coordinates of the trapezoidal area shown in figure Q7.
(c) Also determine the moment of inertia of the composite body about the X and the Y axis. [8 marks]

Figure Q7

END OF EXAMINATION!!!

