NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY DEAPARTMENT OF CIVIL AND WATER ENGINEERING FACULTY OF INDUSTRIAL TECHNOLOGY BACHELOR OF ENGINEERING (HONOURS) DEGREE PART I SECOND SEMESTER EXAMINATIONS – JUNE 2010 ENGINEERING MECHANICS II: KINEMATICS & DYNAMICS – TCW 1201

INSTRUCTIONS

Answer any five (5) questions

Time:3 hoursTotal Marks:100

QUESTION I

The velocity of a particle moving along the x-axis is given as a function of time; the position is given at some instant as follows:

 $v(t) = 60t - 20 \frac{m}{s}$

At t=0,
$$x(o) = 20m$$

(a) Determine the position of the particle as a function of time. [2 marks]

(b) Determine the acceleration of the particle as a function of time. [2 marks]

© Evaluate the:

(i)	position,	[2 marks]
(ii)	velocity, and	[2 marks]
(iii)	acceleration of the particle at $t = 8s$.	[2 marks]

(d) Determine the total distance traveled by the particle between time t = 8s and time t = 12s. [4 marks]

(e) Sketch displacement x(t), the velocity v(t), and the acceleration a(t) for the interval $0 \le t \le 10s$. [6 marks]

QUESTION 2

Two race cars start from rest at the same time. Acceleration of car A is given by

 $30e^{-t/5} m/s^2$ and that of car B is given by $20e^{-t/5}m/s^2$.

(a) Determine the distance at which car B overtakes car A.	[10 marks]
(b) Also determine their relative velocity at that time.	[10 marks]

QUESTION 3

(a) Write short notes on the collision of elastic bodies. [6 marks] The bars shown in figure Q3 are sliding freely on a horizontal rod. For the conditions specified in table Q3, determine:

(b) The final velocity of both beads.

[©] The percentage of the initial kinetic energy lost as a result of the collision of the two bars. e is the coefficient of restitution.

[6 marks]

Table Q3								
mA	vA	mB	vB	e				
10kg	5m/s	6kg	2m/s	0.3				

Figure Q3

QUESTION 4

A10kg projectile is fired horizontally with an initial velocity of 100m/s from the top of a hill, which is 100m above the surrounding area.

(a)Determine the range R of the projectile (horizontal distance

[8 marks]

traveled).	[10 marks]
(b) The elapsed time before it strikes the ground. Air resistance is	
negligible.	[10 marks]
<u>QUESTION 5</u>	
(a) Mention five characteristics of dry friction.	[5 marks]
(b) Briefly explain the three types of friction problems	[3 marks]

(c) Distinguish between the coefficient of static friction and the coefficient of kinetic friction. [4 marks]

(d) A 30 kg mass is pulled along a flat surface at a constant speed by a cable tension T at an angle of 40^{0} in relation to the horizontal direction as shown in figure Q5 below. The coefficient of kinetic friction between the surface and the mass varies from $\mu_{k} = 0.20$ to 0.35. Determine the range of values of the magnitude of this tension T. **[8 marks]**

QUESTION 6

From all the topics covered, explain why engineers should study mechanics with a special emphasis to dynamics. [20 marks]

QUESTION 7

(a) Derive an expression for the parallel axis theorem of an area. [4 marks]

(b) Determine the centroidal coordinates of the trapezoidal area shown in figure Q7. [8 marks] (c) Also determine the moment of inertia of the composite body about the X and the Y axis. [8 marks]

Figure Q7

END OF EXAMINATION!!!