NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY FACULTY OF INDUSTRIAL TECHNOLOGY

DEPARTMENT OF CIVIL AND WATER ENGINEERING

Bachelor of Engineering Honours Degree in Civil and Water Engineering PART I SECOND SEMESTER EXAMINATIONS MAY 2011 ENGINEERING MECHANICS II: KINEMATIC AND DYNAMIC – TCW 1201

INSTRUCTIONS

Answer Any Five Questions

Total Marks 100

Time 3 hours

Question One

Rectilinear motion is motion along a straight line. Determine the position, velocity and the acceleration given;

(a) The position as a function of time.	[2 marks]
(b) Velocity as a function of time.	[2 marks]
(c) Acceleration as a function of time.	[2 marks]
(d) Acceleration as a function of position.	[4 marks]
(e) Acceleration as a function of velocity.	[4 marks]
(f) Acceleration as a constant.	[6 marks]

Question two

(a)Describe the development of thermodynamics as a field of study. [6 marks]

(b) With the aid of diagrams write short notes on:

(i) Relative motion along a line.	[4 marks]
(ii) Plane curvilinear motion.	[4 marks]
(iii) Space curvilinear motion.	[6 marks]

Question three

A 10kg projectile is fired horizontally with an initial velocity of 200m/s form the hilltop 100m above the ground. Determine the range \mathbf{R} of the projectile (horizontal distance travelled) and the elapsed time before it strikes the ground. Neglect air resistance.

[20 marks]

Question four

For the diagram shown in figure Q4 the 5kg block slides along a horizontal floor and strikes bumper B. The coefficient of friction between the block and the floor is $u_k = 0.45$, and the mass of the bumper is 2kg. If the speed of the block is 10m/s when it is 20 m from the bumper, determine:

(a) the speed v of the block at the instant it strikes the bumper

[10 marks]

(b) The maximum deflection of the spring due to the motion of the block.

[10 marks]

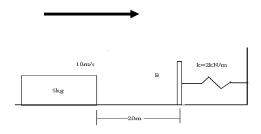


Figure Q4

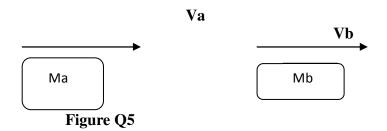
Question five

The bars shown in figure Q5 are sliding freely on a horizontal rod.. For the conditions specified in table Q5, determine:

(a) The final velocity of both beads.

[8marks]

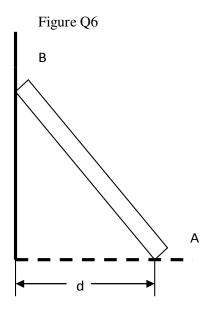
(b) The percentage of the initial kinetic energy lost as a result of the collision of the two bars.


[6 marks]

(c) The average interaction force between the beads if the duration of impact is 0.001s.

[6 marks]

Table Q5				
mA	vA	mB	vB	e
10kg	5m/s	5kg	2m/s	0.4


Table 05

Question six

- (a) Mention the applications of friction where there is need to minimize it and some where these effects are essential. [6 marks]
- (b) Distinguish between the coefficient of static friction and the coefficient of kinetic friction. [4 marks]

Determine the maximum distance d it can be placed from the smooth wall and not slip. The coefficient of static friction between the floor and the pole is $u_s = 0.32$

End of examination !!!