NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

FACULTY OF INDUSTRIAL TECHNOLOGY BACHELOR OF ENGINEERING HONOURS DEGREE DEPARTMENT OF CIVIL AND WATER ENGINEERING AUGUST 2011 SUPPLIMENTARY EXAMINATIONS

ENGINEERING MECHANICS II: KINEMATIC AND DYNAMICS - TCW 1201

ANSWER ANY FIVE (5) QUESTIONS
TIME ALLOWED: 3 HRS
TOTAL MARKS : 100

Question One

Two race cars start from rest at the same time. Acceleration of car A is given by $30 e^{-t / 5} \mathrm{~m} / \mathrm{s}^{2}$ and that of car B is given by $20 e^{-t / 5} \mathrm{~m} / \mathrm{s}^{2}$
(a) Determine the distance at which car B overtakes car A .
(b) Also determine their relative velocity at that time.

Question two

The total linear momentum of a system of three particles at time $t=5 s$ is given by $G_{2,2}=4 i-6 j+6 \mathrm{~kg} . \mathrm{m} / \mathrm{s}$. At time $t=8 \mathrm{~s}$, the linear momentum has changed to $G_{2.4}=3 i-.2 j+4 k \mathrm{~kg} . \mathrm{m} / \mathrm{s}$. Calculate the magnitude F of the time average of the resultant of the external forces acting on the system during the interval.

Question three

For the figure shown below the 5 kg block slides along a horizontal floor and strikes bumper B. The coefficient of friction between the block and the floor is $u_{k}=0.3$, and the mass of the bumper is 2 kg . If the speed of the block is $10 \mathrm{~m} / \mathrm{s}$ when it is 20 m from the bumper, determine:
(a) the speed v of the block at the instant it strikes the bumper
(b) The maximum deflection of the spring due to the motion of the block.

Question four

The bars shown in figure Q4 are sliding freely on a horizontal rod.. For the conditions specified in table Q4, determine:
(a) The final velocity of both beads.
(b) The percentage of the initial kinetic energy lost as a result of the collision of the two bars.
(c) The average interaction force between the beads if the duration of impact is 0.001 s .

Table Q4

$\mathbf{m A}$	vA	$\mathbf{m B}$	$\mathbf{v B}$	\mathbf{e}
$\mathbf{9 k g}$	$\mathbf{3 m} / \mathbf{s}$	$\mathbf{2 k g}$	$\mathbf{O m} / \mathbf{s}$	$\mathbf{0 . 3}$

Figure Q4

Question five

(a) Mention the applications of friction where there is need to minimize it and some where these effects are essential.
(b) Distinguish between the coefficient of static friction and the coefficient of kinetic friction.
© The uniform pole shown in figure Q 5 has a weight of 2 kN and a length of 15 m . Determine the maximum distance d it can be placed from the smooth wall and not slip. The coefficient of static friction between the floor and the pole is $u_{s}=0.32$

Figure Q5

Question six

(a) Determine the centroidal coordinates of the trapezoidal area shown in figure Q6.
[10]
(b) Also determine the moment of inertia of the composite body about the X and the Y axis.
[10]

Figure Q6
End of examination !!!

