NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY FACULTY OF INDUSTRIAL TECHNOLOGY

DEPARTMENT OF CIVIL AND WATER ENGINEERING BACHELOR OF ENGINEERING (HONOURS) DEGREE PART I SUPPLIMENTARY EXAMINATION - AUGUST 2014 TCW 1201: ENGINEERING MECHANICS - KINEMATICS AND DYNAMICS

INSTRUCTIONS

Answer any FOUR questions. Each question carries 25 marks.
Time: 3 Hours
Total Marks: 100

QUESTION 1

a) Kinematics of a particle is characterized by specifying, at any given instant, the particle's position, velocity and acceleration. From first principles derive an expression that relates these three parameters.
b) The velocity of a particle traveling along a straight line is $v=v_{0}-k s$, where k is constant. If $s=0$ when $t=0$, determine the position and acceleration of the particle as a function of time.

QUESTION 2

A boy throws a ball at O in the air with a speed v_{0} at an angle θ_{1}. If he then throws another ball with the same speed v_{0} at an angle $\theta_{2}<\theta_{1}$, determine the time between the throws so that the balls collide in mid air at B.

QUESTION 3

The $800-\mathrm{kg}$ car at B is connected to the $350-\mathrm{kg}$ car at A by a spring coupling as shown in Figure 3.1. Determine the stretch in the spring if:
(a) The wheels of both cars are free to roll and
(b) The brakes are applied to all four wheels of car B, causing the wheels to skid.

Take $\left(\mu_{k}\right)_{B}=0.4$. Neglect the mass of the wheels.

Figure 3.1

QUESTION 4

a) Marbles having a mass of 5 g fall from rest at A through the glass tube and accumulate in the can at C as illustrated in Figure 4.1. Determine the placement R of the can from the end of the tube and the speed at which the marbles fall into the can. Neglect the size of the can.

Figure 4.1
b) The ball has a mass of 0.5 kg and is suspended from a rubber band having an unstretched length of 1 m and a stiffness $k=50 \mathrm{~N} / \mathrm{m}$ as shown in Figure 4.2. If the support at A to which the rubber band is attached is 2 m from the floor, determine the greatest speed the ball can have at A so that it does not touch the floor when it reaches its lowest point B. Neglect the size of the ball and the mass of the rubber band.

Figure 4.2

QUESTION 5

If the shaft and plate rotate with a constant angular velocity of $\omega=14 \mathrm{rad} / \mathrm{s}$, determine the velocity and acceleration of point C located on the corner of the plate at the instant shown. Express the result in Cartesian vector form.

Figure 5.1

