

NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY
 FACULTY OF INDUSTRIAL TECHNOLOGY
 department of civil and water engineering
 ENGINEERING MECHANICS - KINEMATICS AND DYNAMICS

TCW 1201

Main Examination Paper

May 2015

This examination paper consists of 3 pages

Time Allowed: 3 hours

Total Marks: 100

Special Requirements: NONE

Examiner's Name: ENG. K. MUSHUNJE
INSTRUCTIONS

1. Answer ALL questions
2. Each question carries 25 marks

MARK ALLOCATION

QUESTION	MARKS
1.	25
2.	25
3.	25
4.	25
5.	25
TOTAL	100

Page 1 of 3

QUESTION 1

a) Explain the difference between relative motion and absolute motion. State where each is applicable.
b) A particle travels along a straight line such that in 2 s it moves from an initial position $\mathrm{s}_{\mathrm{A}}=+0.5 \mathrm{~m}$ to a position $\mathrm{s}_{\mathrm{B}}=-1.5 \mathrm{~m}$. Then in another 4 s it moves from s_{B} to $\mathrm{s}_{\mathrm{C}}=+2.5 \mathrm{~m}$. Determine the particle's average velocity and average speed during the 6 s time interval.
c) As a train accelerates uniformly it passes successive kilometre marks while traveling at velocities of 2 m / s and then $10 \mathrm{~m} / \mathrm{s}$. Determine the train's velocity when it passes the next kilometre mark and the time it takes to travel the $2-\mathrm{km}$ distance.

QUESTION 2

If the car shown in Figure 2 passes point A with a speed of $20 \mathrm{~m} / \mathrm{s}$ and begins to increase its speed at a constant rate of $a_{t}=0.5 \mathrm{~m} / \mathrm{s}^{2}$, determine the magnitude of the car's acceleration when $\mathrm{s}=100 \mathrm{~m}$. [25]

Figure 2

QUESTION 3

The smooth block B, having a mass of 0.2 kg , is attached to the vertex A of the right circular cone using a light cord as shown in Figure 3. If the block has a speed of $0.5 \mathrm{~m} / \mathrm{s}$ around the cone, determine the tension in the cord and the reaction which the cone exerts on the block. Neglect the size of the block.
[25]

Figure 3

Page 2 of 3

QUESTION 4

The roller coaster car having a mass m is released from rest at point A as shown in Figure 4. If the track is to be designed so that the car does not leave it at B, determine the required height h. Also, find the speed of the car when it reaches point C. Neglect friction.

Figure 4

QUESTION 5

a) Explain with the aid of diagrams, were necessary, the following terms used in rigid body kinematics:
i. Translation
ii. Rotation about a fixed axis
iii. General plane motion
b) When only two gears are in mesh, the driving gear A and the driven gear B will always turn in opposite directions as shown in Figure 5. In order to get them to turn in the same direction an idler gear C is used. In the case shown, determine the angular velocity of gear B when $t=5 \mathrm{~s}$, if gear A starts from rest and has an angular acceleration of $\alpha_{\mathrm{A}}=(3 t+2) \mathrm{rad} / \mathrm{s}^{2}$, where t is in seconds. [16]

Figure 5

Page 3 of 3

