NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY FACULTY OF INDUSTRIAL TECHNOLOGY DEPARTMENT OF CIVIL AND WATER ENGINEERING BACHELOR OF ENGINEERING (HONOURS) DEGREE PART I SECOND SEMESTER EXAMINATIONS – JUNE 2010 MATERIAL SCIENCE – TCW 1202

INSTRUCTIONS

- 1. Each question carries twenty (20) marks and there are six (6) questions in total.
- 2. Attempt the whole of Section A and three (3) questions from Section B.
- 3. Pay attention to the instructions on the cover page of your answer booklet.

Total marks: 100

Time: 3 Hours

Section A

QUESTION 1

a) Discuss the differences between interstitial and substitutional solid solutions. [8 marks]
 b) In Table Q1 below, atomic radius, crystal structure, electronegativity, and the most common valence are tabulated, for several elements; for those that are non-metals, only atomic radii are indicated. Which of these elements would be expected to form the following with nickel?

i.	A substitutional solid solution having complete solubility	[4 marks]
ii.	A substitutional solid solution of incomplete solubility	[4 marks]
iii.	An interstitial solid solution	[4 marks]

Table Q1

Element	Atomic Radius (nm)	Crystal Structure	Electronegativity	Valence
Nickel	0.1246	FCC	1.8	+2
Carbon	0.071			
Hydrogen	0.046			
Oxygen	0.060			
Silver	0.1445	FCC	1.9	+1
Aluminium	0.1431	FCC	1.5	+3
Cobalt	0.1253	НСР	1.8	+2
Chromium	0.1249	BCC	1.6	+3
Iron	0.1241	BCC	1.8	+2
Platinum	0.1387	FCC	2.2	+2
Zinc	0.1332	НСР	1.6	+2

QUESTION 2

a)	Distinguish plast	ic deformation	from elastic deformation	on. [4 marks]
----	-------------------	----------------	--------------------------	---------------

- b) Explain some of the limitations of concrete as a structural material. [6 marks]
- A cylindrical specimen of steel having an original diameter of 12.8 mm is tensile tested to fracture and found to have an engineering fracture strength of 460 MPa. If its cross-sectional diameter at fracture is 10.7 mm, determine:
 - i. The ductility in terms of percent reduction in area [5 marks]
 - ii. The true stress at fracture

[5 marks]

SECTION B

QUESTION 3

a) Give definitions for the following material mechanical properties.

i.	Resilience	[2 marks]
ii.	Toughness	[2 marks]
iii.	Ductility	[2 marks]
iv.	Tensile strength	[2 marks]
		Page 2 of 4

- Poisson's ratio v.
- A tensile stress is to be applied along the long axis of a cylindrical brass rod that b) has a diameter of 13 mm. Determine the magnitude of the load required to produce a 5.6 x 10^{-3} mm change in diameter if the deformation is entirely elastic. Poisson's ratio for brass is 0.34. [10 marks]

QUESTION 4

- Given in Table Q4 below are the solidus and liquidus temperatures for the copper a) (Cu) - gold (Au) system. Construct on graph paper the phase diagram for this system and label each region. [10 marks]
- b) For the solidification of pure gold, calculate the critical radius and the activation free energy if nucleation is homogeneous. Values for the latent heat of fusion and surface free energy are -1.16 x 10^9 J/m³ and 0.132 J/m³, respectively. Use 230 °C as the supercooling value and the melting temperature of gold is 1084°C. [6 marks]
- Now calculate the number of atoms found in a nucleus of critical size. Assume c) a lattice parameter of 0.413 nm for solid gold at its melting temperature and an FCC structure. [4 marks]

Composition	Solidus Temperature	Liquidus Temperature
Weight % (Au)	(°C)	(°C)
0	1085	1085
20	1019	1042
40	972	996
60	934	946
80	911	911
90	928	942
95	974	984
100	1064	1064

Table O4

QUESTION 5

[2 marks]

- a) What is the difference between thermal fatigue and corrosion fatigue? [4 marks]
- b) Briefly describe one standard method for testing the impact toughness of metallic materials. [6 marks]
- c) Draw a graph showing the typical progression of creep failure in metals under constant stress and temperature and explain each stage. [10 marks]

QUESTION 6

- a) Identify and explain briefly the following forms of corrosion:
- i. A water pipe develops a hole at a bend. [3 marks]
 ii. A stainless steel ladder rung submerged in a swimming pool cracks. [3 marks]
 iii. A garden shed roof that has been covered with dead rotting leaves for years is observed to have wasted away. [4 marks]
- b) Discuss, using illustrations where appropriate, how underground steel pipes can be protected against corrosion. [10 marks]

END OF EXAMINATION