NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF CIVIL AND WATER ENGINEERING FACULTY OF INDUSTRIAL TECHNOLOGY BACHELOR OF ENGINEERING (HONOURS) DEGREE PART I SUPPLEMENTARY EXAM.-SEPT.- 2008
 ENGINEERING SURVEY I - TCW 2102

INSRUCTIONS

Answer any four questions
Time : 3hours
Total Marks : 100

QUESTION 1

(a) List any three types of tapes that you have learnt. (3 marks)
(b) List the classes of survey you know and explain the difference between them. (4marks)
(c) A baseline of exactly 635 m is to be set out. What measurement would you make with a 60 m tape which is known to be $0,5 \%$ too short to obtain the correct distance ?(3marks)
(d) What do you understand by coefficient of thermal expansion of a tape material ?(3marks)
(e) A steel tape of nominal length 30 m was used to measure a line AB by suspending it between supports. The following measurements were recorded :

Line	Length measured (m)	Slope angle	Mean temperature	Applied tension(N)
AB	29,872	$+3^{0} 40^{\prime}$	$5^{\circ} \mathrm{C}$	120

The standardized length of the tape was known to be $30,014 \mathrm{~m}$ at $20^{\circ} \mathrm{C}$ and 50 N tension. The tape has a mass of $0,170 \mathrm{kgm}^{-1}$ and cross-sectional area of $2 \mathrm{~mm}^{2}, \mathrm{E}=200 \mathrm{kN} / \mathrm{mm}^{2}$ and coefficient of thermal expansion of the tape material of $0,0000112 /^{\circ} \mathrm{C}$. Calculate the horizontal length of AB. (12 marks)

QUESTION 2

(a) The following compass bearings were taken at Chipangali when magnetic declination was $10^{0} \mathrm{E}$.
$\mathrm{AB} \quad 175^{0} 30^{\prime}$
BC $246^{\circ} 30^{\prime}$
CD $142^{\circ} 00^{\prime}$
DE $\quad 357^{\circ} 00^{\prime}$
EF $\quad 96^{\circ} \quad 10^{\prime}$
Calculate the true compass bearings. (5 marks)
(b) Write the following compass bearings as whole circle bearings (5 marks)
(i) $\mathrm{N} 10^{\circ} \mathrm{W}$, (ii) $\mathrm{S} 50^{\circ} \mathrm{E}$, (iii) $\mathrm{S} 40^{\circ} \mathrm{W}$, (iv) $\mathrm{N} 50^{\circ} \mathrm{E}$ and (v) $\mathrm{N} 45^{\circ} \mathrm{W}$.
© Eliminate the effects of local attraction from the given observed values. Tabulate your work, showing the amount of adjustment and the adjusted bearings. (15 marks)

Line	Observed Value	
AE	137^{0}	00^{\prime}
AB	60°	30^{\prime}
BA	230°	15^{\prime}
BC	358^{0}	00^{\prime}
CB	182^{0}	00^{\prime}
CD	148^{0}	15^{\prime}
DC	328^{0}	15
DE	219^{0}	00^{\prime}
ED	44^{0}	30^{\prime}
EA	316^{0}	15,

QUESTION 3

Calculate the total area in square metres of a piece of land shown in fig. 3 , using any two methods for the irregular bounded area (25 marks)

QUESTION 4

The following levels were taken over a stretch of ground where it is required to excavate a trench, 1,1metres wide with vertical sides for carrying a pipe at a downgrade of 1:50 from A to F.The bottom of the pipe is to be 1,7 metres vertically below A. Ground elevation at $\mathrm{A}=1300,000 \mathrm{~m}$.

Station	Horizontal distance from $\mathrm{A}(\mathrm{m})$	B.S.	I.S.	F.S.
A	-	3,094		
B	15		2,194	
C	37	0,640	1,524	
D	57		1,143	0,381
E	67			2,652
F	76			

(i) Reduce the levels using the rise and fall method and hence determine the amount of cut at every station. (25marks)

QUESTION 5

(a) Fig. 5a shows a 10 m square grid with the depth of excavation to formation level shown for a basement. Calculate the volume of excavation. (10 marks)
(b) Fig. 5 b shows contour lines that were obtained at a reservoir construction site. The plan area contained by each contour was obtained using a planimeter. Given the following information :

Contour	Area enclosed $\left(\mathrm{m}^{2}\right)$
150	-
148	15100
145	13700
140	12300
135	11200
130	9800
125	7100
120	4600

Calculate the volume of water that is going to be contained in the reservoir using any two methods (15 marks)

List of formulae

$$
\begin{aligned}
& V=\frac{d}{2}\left(A_{1}+A_{N}+2\left(A_{2}+A_{3}+\ldots \ldots . A(N-1)\right)\right. \\
& V=\frac{d}{3}\left(A_{1}+A_{N}+4 O+2 E\right) \\
& C=L_{m} \frac{\left(L^{\prime}-L\right)}{L} \\
& C=L_{m}\left(t_{f}-t_{s}\right) \alpha \\
& C=L_{m}(1-\operatorname{Cos} \theta) \\
& C=L_{m} \frac{\left(T_{\underline{f}}-T_{s}\right)}{A x E} \\
& C=\frac{L m}{24} \frac{(M g)^{2}}{T^{2}} \\
& A=\sqrt{s(s-a)(s-b)(s-c)} \\
& A=\underline{d}\left[O_{1}+O_{N}+2\left(O_{2}+O_{3}+O_{4}+\ldots . O_{(N-1)}\right]\right. \\
& A=\frac{d}{3}[X+2 O+4 E]
\end{aligned}
$$

FIG. 3

FIG. 5A

h1		h2		h3		$\begin{aligned} & \mathrm{h} 4 \\ & 78,10 \mathrm{~m} \end{aligned}$
4,76m		5,14m		6,72m		
h5	h6		h7		h8	
3,21m		4,77m		5,82m		6,07m
			h1			
1,98m		2,31m		3,55m		

Fig. 5b

