NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF CIVIL AND WATER ENGINEERING FACULTY OF INDUSTRIAL TECHNOLOGY BACHELOR OF ENGINEERING (HONOURS) DEGREE PART I SUPPLEMENTARY EXAM.-SEPT.- 2008 ENGINEERING SURVEY I – TCW 2102

INSRUCTIONS

Answer any four questions

Time: 3hours
Total Marks: 100

QUESTION 1

- (a) List any three types of tapes that you have learnt. (3 marks)
- (b) List the classes of survey you know and explain the difference between them. (4marks)
- (c) A baseline of exactly 635m is to be set out. What measurement would you make with a 60m tape which is known to be 0,5% too short to obtain the correct distance ?(3marks)
- (d) What do you understand by coefficient of thermal expansion of a tape material ?(3marks)
- (e) A steel tape of nominal length 30m was used to measure a line AB by suspending it between supports. The following measurements were recorded:

Line Length measured(m) Slope angle Mean temperature Applied tension(N) AB $29,872 + 3^0 40$ ' 5^0 C 120

The standardized length of the tape was known to be 30,014 m at 20°C and 50 N tension. The tape has a mass of $0,170 \text{kgm}^{-1}$ and cross-sectional area of 2mm^2 , $E=200 \text{kN/mm}^2$ and coefficient of thermal expansion of the tape material of $0,0000112/^{\circ}\text{C}$. Calculate the horizontal length of AB. (12 marks)

QUESTION 2

(a) The following compass bearings were taken at Chipangali when magnetic declination was 10^{0} E.

AB 175⁰ 30'

BC 246⁰ 30'

CD 142⁰ 00'

DE 357⁰ 00'

EF 96⁰ 10'

Calculate the true compass bearings.(5 marks)

(b) Write the following compass bearings as whole circle bearings (5 marks)

(i) N 10^0 W, (ii) S 50^0 E, (iii) S 40^0 W, (iv) N 50^0 E and (v) N 45^0 W.

 \odot Eliminate the effects of local attraction from the given observed values. Tabulate your work , showing the amount of adjustment and the adjusted bearings. (15 marks)

Line Observed Value

AE 137^{0} 00'

AB 60^{0} 30'

BA 230⁰ 15'

BC 358^0 00'

CB 182^0 00'

CD 148⁰ 15'

DC 328⁰ 15'

DE 219^0 00'

ED 44⁰ 30'

EA 316⁰ 15'

QUESTION 3

Calculate the total area in square metres of a piece of land shown in fig. 3, using any two methods for the irregular bounded area (25 marks)

QUESTION 4

The following levels were taken over a stretch of ground where it is required to excavate a trench, 1,1metres wide with vertical sides for carrying a pipe at a downgrade of 1: 50 from A to F.The bottom of the pipe is to be 1,7metres vertically below A. Ground elevation at A = 1300,000 m.

Station	Horizontal distance from A(m)	B.S.	I.S.	F.S.
Α	-	3,094		
В	15		2,194	
C	37		1,524	
D	57	0,640		0,381
E	67		1,143	
F	76			2,652

(i) Reduce the levels using the rise and fall method and hence determine the amount of cut at every station. (25marks)

QUESTION 5

- (a) Fig. 5a shows a 10m square grid with the depth of excavation to formation level shown for a basement. Calculate the volume of excavation. (10 marks)
- (b) Fig.5b shows contour lines that were obtained at a reservoir construction site. The plan area contained by each contour was obtained using a planimeter. Given the following information:

Contour	Area enclosed (m ²)
150	-
148	15 100
145	13 700
140	12 300
135	11 200
130	9 800
125	7 100
120	4 600

Calculate the volume of water that is going to be contained in the reservoir using any two methods (15 marks)

List of formulae

$$V = \underline{d}_{2} (A_{1} + A_{N} + 2 (A_{2} + A_{3} + \dots A(N-1))$$

$$V = \underline{d} (A_1 + A_N + 4O + 2E)$$

$$C = L_m (\underline{L'-L})$$

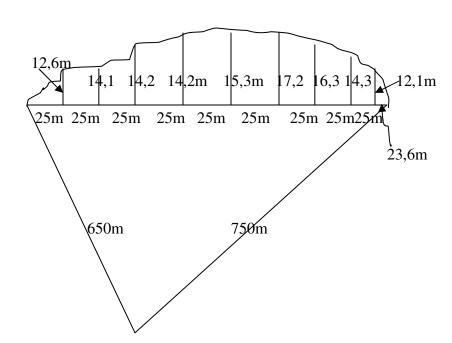
$$C = L_m (t_f - t_s) \alpha$$

$$C = L_m (1-Cos \theta)$$

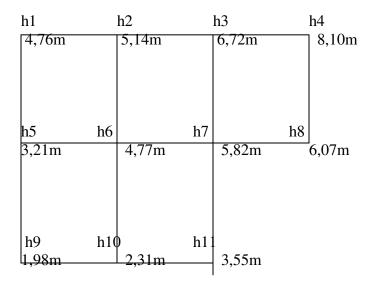
$$C = L_m (\underline{T_f - T_s})$$

$$AxE$$

$$C = \underline{Lm} \left(\underline{Mg} \right)^2$$


$$24 \quad T^2$$

$$A = \sqrt{s (s-a) (s-b) (s-c)}$$


$$A = \frac{d}{2} [O_1 + O_N + 2 (O_2 + O_3 + O_4 +O_{(N-1)})]$$

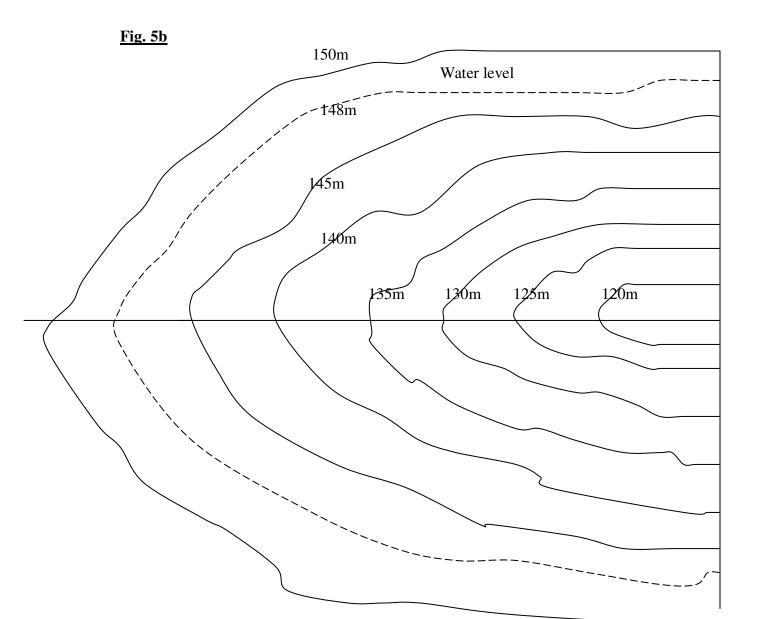

$$A = \frac{d}{3} [X + 2O + 4E]$$

FIG. 5A

