NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF CIVIL AND WATER ENGINEERING FACULTY OF INDUSTRIAL TECHNOLOGY BACHELOR OF ENGINEERING (HONOURS) DEGREE PART I SUPPLEMENTARY EXAM.-SEPT.- 2008 <u>ENGINEERING SURVEY I – TCW 2102</u>

INSRUCTIONS

Answer any four questions

Time : 3hours Total Marks : 100

QUESTION 1

(a) List any three types of tapes that you have learnt. (3 marks)

(b) List the classes of survey you know and explain the difference between them. (4marks)

(c) A baseline of exactly 635m is to be set out. What measurement would you make with a 60m tape which is known to be 0,5% too short to obtain the correct distance ?(3marks)

(d) What do you understand by coefficient of thermal expansion of a tape material ?(3marks)

(e) A steel tape of nominal length 30m was used to measure a line AB by suspending it between supports. The following measurements were recorded :

Line	Length measured(m)			Applied tension(N)
AB	29,872	$+3^{0}40'$	$5^{0}C$	120

The standardized length of the tape was known to be 30,014m at 20°C and 50N tension. The tape has a mass of $0,170\text{kgm}^{-1}$ and cross-sectional area of 2mm^2 , E = 200kN/mm^2 and coefficient of thermal expansion of the tape material of $0,0000112/^{\circ}\text{C}$. Calculate the horizontal length of AB. (12 marks)

QUESTION 2

(a) The following compass bearings were taken at Chipangali when magnetic declination was 10^{0} E.				
AB 175^0 30' BC 246^0 30' CD 142^0 00' DE 357^0 00' EF 96^0 10' Calculate the true compass bearings.(5 marks)				
(b) Write the following compass bearings as whole circle bearings (5 marks)				
(i) N 10^{0} W, (ii) S 50^{0} E, (iii) S 40^{0} W, (iv) N 50^{0} E and (v) N 45^{0} W.				
© Eliminate the effects of local attraction from the given observed values. Tabulate your work , showing the amount of adjustment and the adjusted bearings. (15 marks)				
Line	Observed Value			
AE	137 [°] 00'			
AB	60 [°] 30'			
BA	230 [°] 15'			
BC	358 ⁰ 00'			
СВ	182 ⁰ 00'			
CD	148 [°] 15'			
DC	328 [°] 15'			
DE	219 ⁰ 00'			
ED	44 [°] 30'			
EA	316 ⁰ 15'			

QUESTION 3

Calculate the total area in square metres of a piece of land shown in fig. 3, using any two methods for the irregular bounded area (25 marks)

QUESTION 4

The following levels were taken over a stretch of ground where it is required to excavate a trench, 1,1metres wide with vertical sides for carrying a pipe at a downgrade of 1: 50 from A to F.The bottom of the pipe is to be 1,7metres vertically below A. Ground elevation at A = 1300,000 m.

Station	Horizontal distance from A(m)	B.S.	I.S.	F.S.
А	-	3,094		
В	15		2,194	
С	37		1,524	
D	57	0,640		0,381
Е	67		1,143	
F	76			2,652

(i) Reduce the levels using the rise and fall method and hence determine the amount of cut at every station. (25marks)

QUESTION 5

(a) Fig. 5a shows a 10m square grid with the depth of excavation to formation level shown for a basement. Calculate the volume of excavation. (10 marks)

(b) Fig.5b shows contour lines that were obtained at a reservoir construction site. The plan area contained by each contour was obtained using a planimeter. Given the following information :

Contour	Area enclosed (m ²)		
150	-		
148	15 100		
145	13 700		
140	12 300		
135	11 200		
130	9 800		
125	7 100		
120	4 600		
Calculate the volume of water that is going to be contained in the reservoir using any two methods (15 marks)			

List of formulae

$$V = \frac{d}{2} (A_{1} + A_{N} + 2 (A_{2} + A_{3} + \dots A_{(N-1)}))$$

$$V = \frac{d}{2} (A_{1} + A_{N} + 4O + 2 E)$$

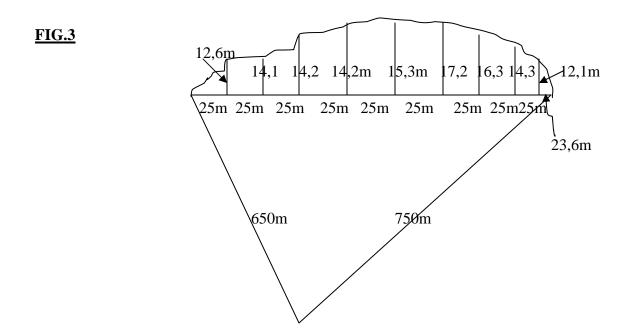
$$C = L_{m} (\underline{L'-L})$$

$$L$$

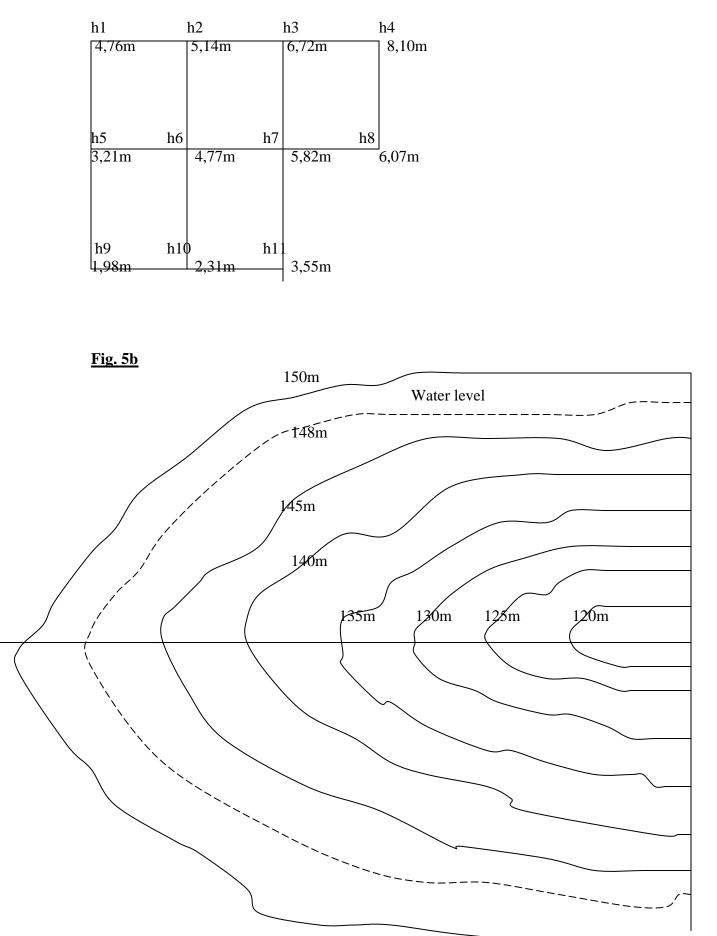
$$C = L_{m} (t_{f} - t_{s}) \alpha$$

$$C = L_{m} (1 - \cos \theta)$$

$$C = L_{m} (\underline{T_{f} - T_{s}})$$


$$A = \sqrt{\frac{(Mg)^{2}}{24 T^{2}}}$$

$$A = \sqrt{\frac{(Mg)^{2}}{T^{2}}}$$


$$A = \sqrt{\frac{(S (s-a) (s-b) (s-c)}{T^{2}}}$$

$$A = \frac{d}{3} [O_{1} + O_{N} + 2 (O_{2} + O_{3} + O_{4} + \dots O_{(N-1)})]$$

$$A = \frac{d}{3} [X + 2O + 4E]$$

<u>FIG. 5A</u>

