NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF CIVIL AND WATER ENGINEERING FACULTY OF INDUSTRIAL TECHNOLOGY BACHELOR OF ENGINEERING (HONOURS) DEGREE PART II FIRST SEMESTER EXAMINATIONS-MAY 2009 ENGINEERING SURVEY I TCW 2102

INSTRUCTIONS

Answer any four questions
Time : 3 hours
Total Marks : 100

QUESTION 1

A baseline PR was measured in two sections with a tape and the field data recorded are as follows :

Line	Length (m)	Slope angle	Temperature	Tension	Catenary
PQ	99,895	$+2^{0}$	$25^{0} \mathrm{c}$	51 N	3 equal bays
QR	31,115	$+1^{0} 50$	$26^{\circ} \mathrm{c}$	50 N	1 bay

Other Data

Radius of the earth	$=$	6361 km
Coefficient of linear expansion	$=$	$0,0000112 /^{\circ} \mathrm{c}$
Elevation (height) above sea level of ground points	$=$	1500 m
Standard temperature	$=$	$22^{\circ} \mathrm{c}$
Standard tension	$=$	50 N
Cross-sectional area of tape	$=$	$2 \mathrm{~mm}^{2}$
Mass of tape	$=$	$0,17 \mathrm{~kg} / \mathrm{m}$
Young's Modulus for the tape material	$=$	$200 \mathrm{kN} / \mathrm{mm}^{2}$

Calculate the mean sea level distance PR.
(25 marks)

QUESTION 2

(a) An embankment shown in fig2 a is to be constructed on a road site to the following dimensions :
Formation width $\mathrm{AB}=16 \mathrm{~m}$
Height at center (h) $=4 \mathrm{~m}$
Side slope $\quad=1: 2$
Ground slope(transverse) $=1: 12$

Calculate the cross-sectional area for this embankment.
(10 marks)
(b) A road is to be constructed on a hillside section as shown in fig.2. Given the following road parameters :
Road width $=20 \mathrm{~m}$
Existing ground slope $=1$ in 5
Side slope in cut $=1$ in 1
Centre height in cut $=1 \mathrm{~m}$
Side slope in fill $=\quad 1$ in 2
Calculate the cross-sectional areas of cut and fill.
(10 marks)
© Given the following information:
Horizontal distance intervals(m): 0 , 50100 , 150 , 200
Reduced levels(m) $500,450,550$, 575 and 600
Draw a longitudinal profile.

QUESTION 3

(a) Define the following terms : bench mark , datum , change point and horizontal line.
(b) Fig. 3 b shows the longitudinal section for a straight length of a proposed road and a series of six cross-sections taken at right angles to the proposed centerline at 50 m horizontal distance intervals. Calculate the total volumes of cut and fill required between the first and last cross-sections.

QUESTION 4

(a) A building site is to be excavated on a hill sloping at 100 to the horizontal. If the horizontal base of the site is to be 40 m by 40 m and the sides of the excavation are to slope at 1 m vertical to $1,5 \mathrm{~m}$ horizontal as shown in fig. 4 a . Calculate the volume of earth to be excavated.
(20 marks)
(b) A planimeter is traced over a circle of radius 8 cm and the difference in readings obtained was 6,324 revolutions. At the same setting the planimeter was used to measure an area on a plan drawn to a scale of $1: 200$ and gave a reading of 8,713 revolutions. Calculate this area.

QUESTION 5

The following sets of readings were taken to test an automatic level
Set 1
Level set up midway between two pegs A and B, 60m apart horizontally.
Reading on the staff when held vertically at $\mathrm{A}=1,608 \mathrm{~m}$
Reading on the staff when held vertically at $B=1,484 \mathrm{~m}$

Set2

Level set up on the line $A B$ extended, 6 m from B horizontally.
Reading on the staff when held vertically at $A=1,455 \mathrm{~m}$
Reading on the staff when held vertically at $B=1,371 \mathrm{~m}$
Calculate the collimation error in the level per 60 m of sight.
(20 marks)
(b) Comment on the error.

QUESTION 6

The following levels were taken over a stretch of ground where it is required to excavate a trench, 1,1 metres wide with vertical sides for carrying a pipe at a downgrade of $1: 50$ from a to F . The bottom of the pipe is to be 1,7 metres vertically below A . Reduced elevation of A is $1300,000 \mathrm{~m}$ and 1 cubic metre of water $=1000$ litres.

Station	Distance from A	B.S.	I.S.	F.S.
A	-	3,094		
B	15 m		2,194	
C	37 m		1,524	
D	56 m	0,640		0,381
E	67 m		1,143	
F	76 m		2,652	

Reduce the levels using the rise and fall method and
Calculate
(i) the volume of the excavation in cubic metres.
(ii) Assuming that a pipe of 0,762 metres internal diameter is laid in the trench and that the depth of water in the pipe is 0,558 metres with a linear velocity of 15 metres per minute, calculate the flow in litres per hour .

List of Formulae

$$
\begin{aligned}
& A=\frac{X \cdot Y^{2} \cdot Z}{100^{2}} \quad A=\frac{(b-s h)^{2}}{2(s-n)} \quad A=\frac{(b+m h)^{2}}{2(s-m)} \\
& \mathrm{W}_{1}=\mathrm{s} \frac{(\mathrm{~b}-\mathrm{nh})}{\mathrm{s}-\mathrm{n}} \quad \mathrm{~W}_{2} \mathrm{~s} \underline{(\mathrm{~b}+\mathrm{mh})} \\
& \mathrm{V}=\mathrm{h} / 3(\mathrm{~A}+2 \mathrm{O}+4 \mathrm{E}), \quad \mathrm{V}=\mathrm{h} / 2\left[\mathrm{~A}_{1}+\mathrm{A}_{\mathrm{N}}+2\left(\mathrm{~A}_{2}+\mathrm{A}_{3}+\ldots \ldots \ldots . . \mathrm{A}_{(\mathrm{N}-1)}\right)\right] \\
& \mathrm{W}_{1}=\mathrm{s} \frac{(\mathrm{~b}+\mathrm{nh})}{\mathrm{s}+\mathrm{n}}, \quad \mathrm{Wg}=\underset{\mathrm{s}-\mathrm{n}}{(\mathrm{~b}+\mathrm{nh})} \quad, \quad \mathrm{A}=1 / 2(\mathrm{~h}+\mathrm{b} / \mathrm{n})\left(\mathrm{W}_{1}+\mathrm{W}_{\mathrm{g}}\right)-\mathrm{b}^{2} / \mathrm{n} \\
& \mathrm{C}_{\mathrm{s}}=\frac{\mathrm{L}\left(\mathrm{~L}^{\prime}-\mathrm{L}\right)}{\mathrm{L}}, \quad \mathrm{C}_{\mathrm{t}}=\mathrm{L}_{\mathrm{m}}\left(\mathrm{t}_{\mathrm{f}}-\mathrm{t}_{\mathrm{s}}\right) \alpha, \quad \mathrm{C}_{\mathrm{c}}=\frac{(\mathrm{mg})^{2} \mathrm{~L}^{3} \mathrm{~m}}{24 \mathrm{~T}^{2}} \quad, \quad \mathrm{C}_{\mathrm{m}}=\underset{\mathrm{R}+\mathrm{h}}{\mathrm{~L} \underline{\mathrm{~h}}} \\
& \mathrm{~V}=1 / 6(\mathrm{a}+\mathrm{b}+\mathrm{c}) .1 . \mathrm{h} \quad, \quad \mathrm{C}_{\mathrm{T}}=\underset{\mathrm{T}}{\underline{T_{t}}-\mathrm{T}_{\mathrm{S}}}
\end{aligned}
$$

Fig.2a

Fig.2b

