NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY FACULTY OF INDUSTRIAL TECHNOLOGY BACHELOR OF ENGINEERING (HONS) DEGREE DEPARTMENT OF CIVIL AND WATER ENGINEERING PART II SECOND SEMESTER EXAM INATIONS – JUNE 2010

HYDROLOGY – TCW 2202

Instructions:	Total marks:	100
Answer any four(4) questions	Time:	3 Hours

QUESTION 1

- a. Why is the study of statistics important in hydrology and what are the objectives? **(6 marks)**
- b. i. A dam is to be constructed to withstand a 1 in 10,000 year flood. It is anticipated that the dam will have a 100 year life. What is the probability that a flood that exceeds the design flood will occur during the lifetime of the dam?
 ii. What is the significance of the answer in i above (6 marks)
- b. Derive the basic hydrologic equation for a region. Provide a sketch and explain the basic terms in the equation (8 marks)
- c. During the year 2000 the water budget terms for Insiza Dam included precipitation of 430 mm/year, evaporation of 530 mm/year, surface water inflow of 10 mm/year, surface outflow of 1730 mm/year and a change in dam volume of -20mm/year. Determine the groundwater flow. (5 marks)

QUESTION 2

- a. Explain 5 important factors that affect runoff.
- b. Determine the optimum number of rain-gauge stations to be established in a basin with data shown in Table Q2. The desired limit of error in the mean value of rainfall is 10%. What is the percentage accuracy of the existing network in the estimation of average depth of rainfall? **(8 marks)**

Table Q2b

Station	А	В	С	D	E
Rainfall (mm)	88	104	138	78	56

- c. A rain gauge installation (A) has been upgraded by replacing a conventional manually read gauge with a tipping bucket type. At the same time a new protective fence has been built around the site.
- i. Examine the homogeneity (consistency) of the record of gauge A in column 2 Table Q2c compared to the average of five near-by gauges. Determine whether or not a change in conditions occurred.

(5 marks)

- ii. If a change occurred, adjust the pre-change data to be homogeneous with that currently being recorded.
- iii. The rain gauge record at A during 1999 has been lost as a result of a computer virus, so estimate the missing annual value. (12 marks)

Table Q2c

		_														
Year 19	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99
Gauge A	690	852	780	842	878	801	899	710	801	750	822	718	801	728	700	-
5 gauge	88	104	979	1033	1060	1008	1105	1018	1099	1066	1134	1037	1108	1022	980	1161
average x 10^2																

QUESTION 3

- a. Describe the following: i) aquifer; ii) aquitard; iii) aquifuge; iv) aquiclude and v) piezometric surface (5 marks)
- b. With the aid of diagram, describe a flowing artesian well.
- c. 3 wells in a confined aquifer are equally spaced a distance of 150 m on a straight line and have a diameter of 225 mm. The aquifer thickness is 65 m and at steady state a discharge of 346 m3/s was recorded in the middle well. If the drawdown is 5 m in all wells, determine:
 - i. the transmissivity of the aquifer if the radius of influence of each well is 800 m
 - ii. the discharge of the first and third wells (15 marks)

QUESTION 4

- a. Discuss the advantages and disadvantages of the Horton' model for determining the infiltration capacity (5 marks)
- b. The diameter of the inside ring of a double ring infiltrometer is 0.30 m. The soil under test is a silty clay. Table Q4 show the volume of water added during each of the time intervals.
- i. Determine the infiltration capacity of the soil (*f* mm/h) during each time interval.
- ii. Plot a graph of f against time
- iii. What is the initial and final infiltration capacity?
- iv. What is the average infiltration capacity during the first 10 min and 60 min?

	1	2	3	4	5	6	7	8	9	10
Time since	0	2	5	10	20	30	60	90	120	180
start of test										
(mins)										
Volume of	-	0.33	0.455	0.719	1.232	0.985	1.526	0.639	0.427	0.779
water added		0								
during time										
interval (m ³ x										
10^{3})										

Table Q4

(20 marks)

(5 marks)

QUESTION 5

- a. What is a hydrograph? Explain the surface-flow phenomenon
- b. Explain the watershed characteristics which affect the nature of streamflow
- c. Discuss the hydrograph concept. How is the hydrograph shape affected by various factors? Explain these factors.
- d. What is a unit hydrograph? How does it permit the conversion of rainfall to runoff?
- e. What is an S-hydrograph? Explain the use of the S-hydrograph in hydrologic analysis. (25 marks)